IDEAS home Printed from
   My bibliography  Save this article

Demonstrating error-correction modelling for intraday statistical arbitrage


  • Brian Jacobsen


Applying cointegration analysis to security price movements illustrates how securities move together in the long-term. This can be augmented with an error-correction model to show how the long-run relationship is approached when the security prices are out of line with their cointegrated relationship. Cointegration and error-correction modelling promises to be useful in statistical arbitrage applications: not only does it show what relative prices of securities should be, but it also illuminates the short-run dynamics of how equilibrium should be restored along with how long it will take. Cointegration, coupled with error-correction modelling, promises to be a profitable way of implementing statistical arbitrage strategies.1 Bondarenko (2003) and Hogan et al. (2004) defined statistical arbitrage as an attempt to exploit the long-horizon trading opportunities revealed by cointegration relationships. Alexander and Dimitriu (2005) showed how cointegration is a better way of implementing a statistical arbitrage strategy than other conventional ways, like the use of tracking error variance minimization. These previous studies, however, did not add error-correction modelling to the trading strategies. This article seeks to fill that gap, by presenting how to implement a statistical arbitrage strategy based on cointegration and error-correction modelling.

Suggested Citation

  • Brian Jacobsen, 2008. "Demonstrating error-correction modelling for intraday statistical arbitrage," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 4(4), pages 287-292.
  • Handle: RePEc:taf:apfelt:v:4:y:2008:i:4:p:287-292
    DOI: 10.1080/17446540701720550

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bredin, Don & Muckley, Cal, 2011. "An emerging equilibrium in the EU emissions trading scheme," Energy Economics, Elsevier, vol. 33(2), pages 353-362, March.
    2. Alexakis, Christos, 2010. "Long-run relations among equity indices under different market conditions: Implications on the implementation of statistical arbitrage strategies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(4), pages 389-403, October.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfelt:v:4:y:2008:i:4:p:287-292. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.