IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Out-of-sample forecasting performance of the QGARCH model

  • Yasemin Ulu
Registered author(s):

    The population value of the R 2 is derived from the Mincer-Zarnowitz volatility forecast regression for a QGARCH(1,1). The study shows that the population R 2 exceeds that of the standard GARCH(1,1). This indicates that accounting for asymmetry in the conditional variance process can increase the predictive power of volatility forecasts. As with the standard GARCH(1,1) model, however, the R 2 is still bounded by the reciprocal of the innovation kurtosis. As a result, small values of the R 2 should be anticipated when using the QGARCH(1,1) in empirical work.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor and Francis Journals in its journal Applied Financial Economics Letters.

    Volume (Year): 1 (2005)
    Issue (Month): 6 (November)
    Pages: 387-392

    in new window

    Handle: RePEc:taf:apfelt:v:1:y:2005:i:6:p:387-392
    Contact details of provider: Web page:

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    2. West, K.D. & Cho, D., 1993. "The Predictive Ability of Several Models of Exchange Rate Volatility," Working papers 9317r, Wisconsin Madison - Social Systems.
    3. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
    4. Weixian Wei, 2002. "Forecasting stock market volatility with non-linear GARCH models: a case for China," Applied Economics Letters, Taylor & Francis Journals, vol. 9(3), pages 163-166.
    5. David McMillan & Alan Speight & Owain Apgwilym, 2000. "Forecasting UK stock market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 10(4), pages 435-448.
    6. Adrian R. Pagan & G. William Schwert, 1989. "Alternative Models For Conditional Stock Volatility," NBER Working Papers 2955, National Bureau of Economic Research, Inc.
    7. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    8. David McMillan & Alan Speight, 2003. "Asymmetric volatility dynamics in high frequency FTSE-100 stock index futures," Applied Financial Economics, Taylor & Francis Journals, vol. 13(8), pages 599-607.
    9. Nicholas Apergis & Sophia Eleptheriou, 2001. "Stock returns and volatility: Evidence from the Athens Stock market index," Journal of Economics and Finance, Springer, vol. 25(1), pages 50-61, March.
    10. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    11. Nicole Davis & Ali Kutan, 2003. "Inflation and output as predictors of stock returns and volatility: international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 13(9), pages 693-700.
    12. David McMillan & Alan Speight, 2001. "Nonlinearities in the black market zloty-dollar exchange rate: some further evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 11(2), pages 209-220.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:apfelt:v:1:y:2005:i:6:p:387-392. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.