IDEAS home Printed from
   My bibliography  Save this article

Subdistribution Regression for Recurrent Events Under Competing Risks: with Application to Shunt Thrombosis Study in Dialysis Patients


  • Chia-Hui Huang

    (National Taipei University)

  • Bowen Li

    (KKBOX Taiwan Co)

  • Chyong-Mei Chen

    (School of Medicine, National Yang-Ming University)

  • Weijing Wang

    (National Chiao Tung University)

  • Yi-Hau Chen

    () (Academia Sinica)


Abstract This work is motivated by a nephrology study in Taiwan, where, after shunt implantation, dialysis patients may experience one of the two types, acute and non-acute, of shunt thrombosis, and each of them may alternatively recur in a patient. In this work, treating the two types of shunt thrombosis as competing risks, we assess covariate effects on the cumulative incidence probability function, or subdistribution, of gap times to the occurrences of acute shunt thrombosis. To accommodate potentially time-varying covariate effects, we extend a varying-coefficient subdistribution regression model to recurrent event analysis and propose associated estimation procedures. The inverse probability of censoring weighting technique is employed to ensure consistent estimation of the regression parameter. Asymptotic distributional theory is derived for the proposed estimator. Simulation results confirm that the proposed estimator performs well in finite samples. Application of the proposed analysis to the shunt thrombosis data reveals that dialysis patients with graft shunts and hypertension are associated with significantly increased incidence of acute shunt thrombosis.

Suggested Citation

  • Chia-Hui Huang & Bowen Li & Chyong-Mei Chen & Weijing Wang & Yi-Hau Chen, 0. "Subdistribution Regression for Recurrent Events Under Competing Risks: with Application to Shunt Thrombosis Study in Dialysis Patients," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 0, pages 1-18.
  • Handle: RePEc:spr:stabio:v::y::i::d:10.1007_s12561-016-9161-0
    DOI: 10.1007/s12561-016-9161-0

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Douglas E. Schaubel, 2004. "Regression methods for gap time hazard functions of sequentially ordered multivariate failure time data," Biometrika, Biometrika Trust, vol. 91(2), pages 291-303, June.
    2. Thomas H. Scheike & Mei-Jie Zhang & Thomas A. Gerds, 2008. "Predicting cumulative incidence probability by direct binomial regression," Biometrika, Biometrika Trust, vol. 95(1), pages 205-220.
    3. Yu Cheng & Jason P. Fine, 2012. "Cumulative incidence association models for bivariate competing risks data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 183-202, March.
    4. Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
    5. Xuelin Huang & Lei Liu, 2007. "A Joint Frailty Model for Survival and Gap Times Between Recurrent Events," Biometrics, The International Biometric Society, vol. 63(2), pages 389-397, June.
    6. Douglas Schaubel & Jianwen Cai, 2006. "Rate/Mean Regression for Multiple-Sequence Recurrent Event Data with Missing Event Category," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 191-207.
    7. J. P. Fine, 1999. "Analysing competing risks data with transformation models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 817-830.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v::y::i::d:10.1007_s12561-016-9161-0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.