IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/vyid10.1007_s12561-016-9153-0.html
   My bibliography  Save this article

Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery

Author

Listed:
  • Xiaoquan Wen

    () (University of Michigan)

Abstract

Abstract Motivated by the genomic application of expression quantitative trait loci (eQTL) mapping, we propose a new procedure to perform simultaneous testing of multiple hypotheses using Bayes factors as input test statistics. One of the most significant features of this method is its robustness in controlling the targeted false discovery rate even under misspecifications of parametric alternative models. Moreover, the proposed procedure is highly computationally efficient, which is ideal for treating both complex system and big data in genomic applications. We discuss the theoretical properties of the new procedure and demonstrate its power and computational efficiency in applications of single-tissue and multi-tissue eQTL mapping.

Suggested Citation

  • Xiaoquan Wen, 0. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 0, pages 1-22.
  • Handle: RePEc:spr:stabio:v::y::i::d:10.1007_s12561-016-9153-0
    DOI: 10.1007/s12561-016-9153-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-016-9153-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
    2. Valen E. Johnson, 2008. "Properties of Bayes Factors Based on Test Statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 354-368.
    3. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205.
    4. Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
    5. Opgen-Rhein Rainer & Strimmer Korbinian, 2007. "Accurate Ranking of Differentially Expressed Genes by a Distribution-Free Shrinkage Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 6(1), pages 1-20, February.
    6. John D. Storey, 2007. "The optimal discovery procedure: a new approach to simultaneous significance testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 347-368.
    7. Valen E. Johnson, 2005. "Bayes factors based on test statistics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 689-701.
    8. Alice Whittemore, 2007. "A Bayesian False Discovery Rate for Multiple Testing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 1-9.
    9. Liang, Feng & Paulo, Rui & Molina, German & Clyde, Merlise A. & Berger, Jim O., 2008. "Mixtures of g Priors for Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 410-423, March.
    10. Peter Muller & Giovanni Parmigiani & Christian Robert & Judith Rousseau, 2004. "Optimal Sample Size for Multiple Testing: The Case of Gene Expression Microarrays," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 990-1001, December.
    11. Xiaoquan Wen, 2014. "Bayesian model selection in complex linear systems, as illustrated in genetic association studies," Biometrics, The International Biometric Society, vol. 70(1), pages 73-83, March.
    12. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v::y::i::d:10.1007_s12561-016-9153-0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.