IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v50y2016i2d10.1007_s11135-015-0161-9.html
   My bibliography  Save this article

The influence of negative response style on survey-based household inflation expectations

Author

Listed:
  • Piotr Białowolski

    () (Warsaw School of Economics)

Abstract

Abstract The study identified a sub-group of respondents adopting a negative response style in consumer tendency surveys and investigated their influence on aggregate household inflation expectations. Households prone to negative response style were identified using multi-group latent class models. The data source was the State of the Household Survey, conducted following European Commission methodology, in Poland between 1999 and 2010 (45 quarters). Although group size for households with negative response style was shown to fluctuate, negative response was comparable between periods. Micro-level information on response style was used to correct inflation expectations by the creation of additional factors for respondent weights. After compensation: (1) respondent inflation expectations proved more consistent with professional forecasts; (2) there was significantly better correlation between inflation expectations and consumer confidence; (3) compensated inflation expectations demonstrated the Ball–Friedman hypothesis; whereas, this pattern did not emerge for uncorrected data. Of the available household characteristics, income and age were the only significant determinants for negative response style.

Suggested Citation

  • Piotr Białowolski, 2016. "The influence of negative response style on survey-based household inflation expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 509-528, March.
  • Handle: RePEc:spr:qualqt:v:50:y:2016:i:2:d:10.1007_s11135-015-0161-9
    DOI: 10.1007/s11135-015-0161-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-015-0161-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rolf Scheufele, 2011. "Are Qualitative Inflation Expectations Useful to Predict Inflation?," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2011(1), pages 29-53.
    2. Francisco Dias & Cláudia Duarte & António Rua, 2010. "Inflation expectations in the euro area: are consumers rational?," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 146(3), pages 591-607, September.
    3. Guy Moors, 2003. "Diagnosing Response Style Behavior by Means of a Latent-Class Factor Approach. Socio-Demographic Correlates of Gender Role Attitudes and Perceptions of Ethnic Discrimination Reexamined," Quality & Quantity: International Journal of Methodology, Springer, vol. 37(3), pages 277-302, August.
    4. Raf Wouters & Frank Smets, 2005. "Comparing shocks and frictions in US and euro area business cycles: a Bayesian DSGE Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 161-183.
    5. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    6. Ball, Laurence, 1992. "Why does high inflation raise inflation uncertainty?," Journal of Monetary Economics, Elsevier, vol. 29(3), pages 371-388, June.
    7. Michael J. Lamla & Thomas Maag, 2012. "The Role of Media for Inflation Forecast Disagreement of Households and Professional Forecasters," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1325-1350, October.
    8. Victor Zarnowitz, 1992. "Business Cycles: Theory, History, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number zarn92-1, June.
    9. Friedman, Milton, 1977. "Nobel Lecture: Inflation and Unemployment," Journal of Political Economy, University of Chicago Press, vol. 85(3), pages 451-472, June.
    10. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    11. van Herk, H. & Poortinga, Y.H. & Verhallen, T.M.M., 2004. "Response styles in rating scales : Evidence of method bias in data from 6 EU countries," Other publications TiSEM c8befc7a-f2f4-44cf-b2fc-b, Tilburg University, School of Economics and Management.
    12. Sendhil Mullainathan & Marianne Bertrand, 2001. "Do People Mean What They Say? Implications for Subjective Survey Data," American Economic Review, American Economic Association, vol. 91(2), pages 67-72, May.
    13. Bruine de Bruin, Wändi & van der Klaauw, Wilbert & Topa, Giorgio & Downs, Julie S. & Fischhoff, Baruch & Armantier, Olivier, 2012. "The effect of question wording on consumers’ reported inflation expectations," Journal of Economic Psychology, Elsevier, vol. 33(4), pages 749-757.
    14. Piotr Białowolski & Tomasz Kuszewski & Bartosz Witkowski, 2014. "Bayesian averaging of classical estimates in forecasting macroeconomic indicators with application of business survey data," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(1), pages 53-68, February.
    15. Branch, William A., 2007. "Sticky information and model uncertainty in survey data on inflation expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 245-276, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Inflation expectations; Latent class analysis; Survey response styles;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:50:y:2016:i:2:d:10.1007_s11135-015-0161-9. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.