IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

How China’s current energy pricing mechanisms will impact its marginal carbon abatement costs?

Listed author(s):
  • Yun Fei Yao

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Sinopec Research Institute of Petroleum Engineering, Sinopec)

  • Qiao-Mei Liang

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Dong-Wei Yang

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Hua Liao

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Yi-Ming Wei

    ()

    (Beijing Institute of Technology
    Beijing Institute of Technology)

Abstract Economic and social costs and benefits are critical factors affecting greenhouse gas abatement activities. Recognizing that energy prices are one of the most important factors influencing abatement costs, this study improved the basic China Energy and Environmental Policy Analysis (CEEPA) model by introducing a current energy pricing mechanism for China. The improved model was applied to generate marginal abatement cost (MAC) curves for China including the current energy pricing mechanism and to analyze MACs for the whole country and main abatement sectors in China under different energy pricing mechanisms. The results show that China MACs are sensitive to pricing mechanisms for electricity and refined oil. Ignoring the current regulation of these prices will lead to MAC underestimation, and price liberalization of these two energy sources could lead to a decrease in China MACs. Under a 50 % emission reduction target, if the electricity price regulation is ignored, the China MAC is underestimated by almost 16 %. Energy pricing reforms will lead to variations in sectoral abatement costs and overall abatement potential, and these impacts are projected to be large in the electricity sector. Under a 50 % reduction target, if the electricity price regulation is liberalized, MAC for the electricity sector nearly will decrease 50 %.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://link.springer.com/10.1007/s11027-014-9623-y
File Function: Abstract
Download Restriction: Access to the full text of the articles in this series is restricted.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Mitigation and Adaptation Strategies for Global Change.

Volume (Year): 21 (2016)
Issue (Month): 6 (August)
Pages: 799-821

as
in new window

Handle: RePEc:spr:masfgc:v:21:y:2016:i:6:d:10.1007_s11027-014-9623-y
DOI: 10.1007/s11027-014-9623-y
Contact details of provider: Web page: http://www.springer.com

Order Information: Web: http://www.springer.com/economics/journal/11027

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Springer, Urs, 2003. "International diversification of investments in climate change mitigation," Ecological Economics, Elsevier, vol. 46(1), pages 181-193, August.
  2. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
  3. Criqui, Patrick & Mima, Silvana & Viguier, Laurent, 1999. "Marginal abatement costs of CO2 emission reductions, geographical flexibility and concrete ceilings: an assessment using the POLES model," Energy Policy, Elsevier, vol. 27(10), pages 585-601, October.
  4. Solveig Glomsrød & Taoyuan Wei & Knut Alfsen, 2013. "Pledges for climate mitigation: the effects of the Copenhagen accord on CO 2 emissions and mitigation costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(5), pages 619-636, June.
  5. Lin, Boqiang & Jiang, Zhujun, 2011. "Estimates of energy subsidies in China and impact of energy subsidy reform," Energy Economics, Elsevier, vol. 33(2), pages 273-283, March.
  6. Yuan, Chaoqing & Liu, Sifeng & Wu, Junlong, 2010. "The relationship among energy prices and energy consumption in China," Energy Policy, Elsevier, vol. 38(1), pages 197-207, January.
  7. Zhang, Zhong Xiang, 1998. "Macroeconomic Effects of CO2 Emission Limits: A Computable General Equilibrium Analysis for China," Journal of Policy Modeling, Elsevier, vol. 20(2), pages 213-250, April.
  8. Stankeviciute, Loreta & Kitous, Alban & Criqui, Patrick, 2008. "The fundamentals of the future international emissions trading system," Energy Policy, Elsevier, vol. 36(11), pages 4272-4286, November.
  9. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Carbon taxation policy in China: How to protect energy- and trade-intensive sectors?," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 311-333.
  10. Liang, Qiao-Mei & Wei, Yi-Ming, 2012. "Distributional impacts of taxing carbon in China: Results from the CEEPA model," Applied Energy, Elsevier, vol. 92(C), pages 545-551.
  11. Storm, Servaas, 1994. "The macroeconomic impact of agricultural policy: A CGE analysis for India," Journal of Policy Modeling, Elsevier, vol. 16(1), pages 55-95, February.
  12. Glomsrod, Solveig & Taoyuan, Wei, 2005. "Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China?," Energy Policy, Elsevier, vol. 33(4), pages 525-542, March.
  13. Edwards, T. Huw. & Hutton, John P., 2001. "Allocation of carbon permits within a country: a general equilibrium analysis of the United Kingdom," Energy Economics, Elsevier, vol. 23(4), pages 371-386, July.
  14. Bréchet, Thierry & Jouvet, Pierre-André, 2008. "Environmental innovation and the cost of pollution abatement revisited," Ecological Economics, Elsevier, vol. 65(2), pages 262-265, April.
  15. Wang, Ke & Wang, Can & Chen, Jining, 2009. "Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change," Energy Policy, Elsevier, vol. 37(8), pages 2930-2940, August.
  16. Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.
  17. Qiao-Mei Liang & Yun-Fei Yao & Lu-Tao Zhao & Ce Wang & Rui-Guang Yang & Yi-Ming Wei, 2013. "Platform for China Energy & Environmental Policy Analysis: A general design and its application," CEEP-BIT Working Papers 43, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  18. Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Resource and Energy Economics, Elsevier, vol. 28(1), pages 1-23, January.
  19. Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
  20. Sancho, Ferran, 2010. "Double dividend effectiveness of energy tax policies and the elasticity of substitution: A CGE appraisal," Energy Policy, Elsevier, vol. 38(6), pages 2927-2933, June.
  21. Dedinec, Aleksandar & Markovska, Natasa & Taseska, Verica & Duic, Neven & Kanevce, Gligor, 2013. "Assessment of climate change mitigation potential of the Macedonian transport sector," Energy, Elsevier, vol. 57(C), pages 177-187.
  22. He, Yongxiu & Liu, Yangyang & Wang, Jianhui & Xia, Tian & Zhao, Yushan, 2014. "Low-carbon-oriented dynamic optimization of residential energy pricing in China," Energy, Elsevier, vol. 66(C), pages 610-623.
  23. Cho, G.L. & Kim, Hyo-Sun & Kim, Y.D., 2010. "Allocation and banking in Korean permits trading," Resources Policy, Elsevier, vol. 35(1), pages 36-46, March.
  24. Andreas Löschel & Zhong Zhang, 2002. "The economic and environmental implications of the US repudiation of the kyoto protocol and the subsequent deals in Bonn and Marrakech," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 138(4), pages 711-746, December.
  25. Qiao-Mei Liang & Qian Wang & Yi-Ming Wei, 2013. "Assessing the Distributional Impacts of Carbon Tax among Households across Different Income Groups: The Case of China," Energy & Environment, , vol. 24(7-8), pages 1323-1346, December.
  26. Levihn, F. & Nuur, C. & Laestadius, S., 2014. "Marginal abatement cost curves and abatement strategies: Taking option interdependency and investments unrelated to climate change into account," Energy, Elsevier, vol. 76(C), pages 336-344.
  27. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
  28. Vijay, Samudra & DeCarolis, Joseph F. & Srivastava, Ravi K., 2010. "A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers," Energy Policy, Elsevier, vol. 38(5), pages 2255-2261, May.
  29. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
  30. Shoven, John B. & Whalley, John, 1977. "Equal yield tax alternatives : General equillibrium computational techniques," Journal of Public Economics, Elsevier, vol. 8(2), pages 211-224, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:21:y:2016:i:6:d:10.1007_s11027-014-9623-y. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Rebekah McClure)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.