IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

On the quadratic eigenvalue complementarity problem

Listed author(s):
  • Carmo P. Brás


    (Universidade Nova de Lisboa)

  • Alfredo N. Iusem


    (Instituto de Matématica Pura e Aplicada (IMPA))

  • Joaquim J. Júdice


    (Instituto de Telecomunicações)

Registered author(s):

    Abstract We introduce several new results on the Quadratic Eigenvalue Complementarity Problem (QEiCP), focusing on the nonsymmetric case, i.e., without making symmetry assumptions on the matrices defining the problem. First we establish a new sufficient condition for existence of solutions of this problem, which is somewhat more manageable than previously existent ones. This condition works through the introduction of auxiliary variables which leads to the reduction of QEiCP to an Eigenvalue Complementarity Problem in higher dimension. Hence, this reduction suggests a new strategy for solving QEiCP, which is also analyzed in the paper. We also present an upper bound for the number of solutions of QEiCP and exhibit some examples of instances of QEiCP whose solution set has large cardinality, without attaining though the just mentioned upper bound. We also investigate the numerical solution of the QEiCP by exploiting a nonlinear programming and a variational inequality formulations of QEiCP. Some numerical experiments are reported and illustrate the benefits and drawbacks of using these formulations for solving the QEiCP in practice.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Journal of Global Optimization.

    Volume (Year): 66 (2016)
    Issue (Month): 2 (October)
    Pages: 153-171

    in new window

    Handle: RePEc:spr:jglopt:v:66:y:2016:i:2:d:10.1007_s10898-014-0260-5
    DOI: 10.1007/s10898-014-0260-5
    Contact details of provider: Web page:

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Hoai Le Thi & Mahdi Moeini & Tao Pham Dinh & Joaquim Judice, 2012. "A DC programming approach for solving the symmetric Eigenvalue Complementarity Problem," Computational Optimization and Applications, Springer, vol. 51(3), pages 1097-1117, April.
    2. Luís Fernandes & Joaquim Júdice & Hanif Sherali & Maria Forjaz, 2014. "On an enumerative algorithm for solving eigenvalue complementarity problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 113-134, October.
    3. A. Pinto da Costa & A. Seeger, 2010. "Cone-constrained eigenvalue problems: theory and algorithms," Computational Optimization and Applications, Springer, vol. 45(1), pages 25-57, January.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:66:y:2016:i:2:d:10.1007_s10898-014-0260-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.