IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007408.html
   My bibliography  Save this article

Surfactant delivery in rat lungs: Comparing 3D geometrical simulation model with experimental instillation

Author

Listed:
  • Alireza Kazemi
  • Bruno Louis
  • Daniel Isabey
  • Gary F Nieman
  • Louis A Gatto
  • Joshua Satalin
  • Sarah Baker
  • James B Grotberg
  • Marcel Filoche

Abstract

Surfactant Replacement Therapy (SRT), which involves instillation of a liquid-surfactant mixture directly into the lung airway tree, is a major therapeutic treatment in neonatal patients with respiratory distress syndrome (RDS). This procedure has proved to be remarkably effective in premature newborns, inducing a five-fold decrease of mortality in the past 35 years. Disappointingly, its use in adults for treating acute respiratory distress syndrome (ARDS) experienced initial success followed by failures. Our recently developed numerical model has demonstrated that transition from success to failure of SRT in adults could, in fact, have a fluid mechanical origin that is potentially reversible. Here, we present the first numerical simulations of surfactant delivery into a realistic asymmetric conducting airway tree of the rat lung and compare them with experimental results. The roles of dose volume (VD), flow rate, and multiple aliquot delivery are investigated. We find that our simulations of surfactant delivery in rat lungs are in good agreement with our experimental data. In particular, we show that the monopodial architecture of the rat airway tree plays a major role in surfactant delivery, contributing to the poor homogeneity of the end distribution of surfactant. In addition, we observe that increasing VD increases the amount of surfactant delivered to the acini after losing a portion to coating the involved airways, the coating cost volume, VCC. Finally, we quantitatively assess the improvement resulting from a multiple aliquot delivery, a method sometimes employed clinically, and find that a much larger fraction of surfactant reaches the alveolar regions in this case. This is the first direct qualitative and quantitative comparison of our numerical model with experimental studies, which enhances our previous predictions in adults and neonates while providing a tool for predicting, engineering, and optimizing patient-specific surfactant delivery in complex situations.Author summary: Surfactant Replacement Therapy (SRT), which involves instillation of a liquid-surfactant mixture directly into the lung airway tree, is a major therapeutic treatment in neonatal patients with respiratory distress syndrome (RDS). This procedure has contributed to a major decrease of the infant mortality in the past 35 years. Disappointingly, its use in adults for treating acute respiratory distress syndrome (ARDS) experienced initial success followed by failures. In this article, we present the first numerical simulations of surfactant delivery into realistic models of the conducting airway tree of the rat lung and compare them with experimental results. In particular, we show that the monopodial architecture of the rat airway tree plays a major role in surfactant delivery, contributing to the poor homogeneity of the end distribution of surfactant. This is the first direct qualitative and quantitative comparison of our numerical model with experimental studies, which enhances our previous predictions in adults and neonates while providing a tool for predicting, engineering, and optimizing patient-specific surfactant delivery in complex situations.

Suggested Citation

  • Alireza Kazemi & Bruno Louis & Daniel Isabey & Gary F Nieman & Louis A Gatto & Joshua Satalin & Sarah Baker & James B Grotberg & Marcel Filoche, 2019. "Surfactant delivery in rat lungs: Comparing 3D geometrical simulation model with experimental instillation," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-27, October.
  • Handle: RePEc:plo:pcbi00:1007408
    DOI: 10.1371/journal.pcbi.1007408
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007408
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007408&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.