IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007102.html
   My bibliography  Save this article

Computational simulation of the reactive oxygen species and redox network in the regulation of chloroplast metabolism

Author

Listed:
  • Melanie Gerken
  • Sergej Kakorin
  • Kamel Chibani
  • Karl-Josef Dietz

Abstract

Cells contain a thiol redox regulatory network to coordinate metabolic and developmental activities with exogenous and endogenous cues. This network controls the redox state and activity of many target proteins. Electrons are fed into the network from metabolism and reach the target proteins via redox transmitters such as thioredoxin (TRX) and NADPH-dependent thioredoxin reductases (NTR). Electrons are drained from the network by reactive oxygen species (ROS) through thiol peroxidases, e.g., peroxiredoxins (PRX). Mathematical modeling promises access to quantitative understanding of the network function and was implemented by using published kinetic parameters combined with fitting to known biochemical data. Two networks were assembled, namely the ferredoxin (FD), FD-dependent TRX reductase (FTR), TRX, fructose-1,6-bisphosphatase (FBPase) pathway with 2-cysteine PRX/ROS as oxidant, and separately the FD, FD-dependent NADP reductase (FNR), NADPH, NTRC-pathway for 2-CysPRX reduction. Combining both modules allowed drawing several important conclusions of network performance. The resting H2O2 concentration was estimated to be about 30 nM in the chloroplast stroma. The electron flow to metabolism exceeds that into thiol regulation of FBPase more than 7000-fold under physiological conditions. The electron flow from NTRC to 2-CysPRX is about 5.32-times more efficient than that from TRX-f1 to 2-CysPRX. Under severe stress (30 μM H2O2) the ratio of electron flow to the thiol network relative to metabolism sinks to 1:251 whereas the ratio of e- flow from NTRC to 2-CysPRX and TRX-f1 to 2-CysPRX rises up to 1:67. Thus, the simulation provides clues on experimentally inaccessible parameters and describes the functional state of the chloroplast thiol regulatory network.Author summary: The state of the thiol redox regulatory network is a fundamental feature of all cells and determines metabolic and developmental processes. However, only some parameters are quantifiable in experiments. This paper establishes simplified mathematical models which enable simulation of electron flows through the regulatory system. This in turn allows for estimating rates and states of components of the network and to tentatively address previously unknown parameters such as the resting hydrogen peroxide levels or the expenditure of reductive power for regulation relative to metabolism. The establishment of such models for simulating the performance and dynamics of the redox regulatory network is of significance not only for photosynthesis but also, e.g., in bacterial and animal cells exposed to environmental stress or pathological disorders.

Suggested Citation

  • Melanie Gerken & Sergej Kakorin & Kamel Chibani & Karl-Josef Dietz, 2020. "Computational simulation of the reactive oxygen species and redox network in the regulation of chloroplast metabolism," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-17, January.
  • Handle: RePEc:plo:pcbi00:1007102
    DOI: 10.1371/journal.pcbi.1007102
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007102
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007102&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.