IDEAS home Printed from
   My bibliography  Save this article

Transition challenges for alternative fuel vehicle and transportation systems


  • Jeroen Struben
  • John D Sterman


Automakers are now developing alternatives to internal combustion engines (ICE), including hydrogen fuel cells and ICE – electric hybrids. Adoption dynamics for alternative vehicles are complex, owing to the size and importance of the auto industry and vehicle installed base. Diffusion of alternative vehicles is both enabled and constrained by powerful positive feedbacks arising from scale and scope economies, research and development, learning by doing, driver experience, word of mouth, and complementary resources such as fueling infrastructure. We describe a dynamic model of the diffusion of and competition among alternative fuel vehicles, including coevolution of the fleet technology, behavior, and complementary resources. Here we focus on the generation of consumer awareness of alternatives through feedback from consumers’ experience, word of mouth, and marketing, with a reduced-form treatment of network effects and other positive feedbacks (which we treat in other papers). We demonstrate the existence of a critical threshold for sustained adoption of alternative technologies, and show how the threshold depends on economic and behavioral parameters. We show that word of mouth from those not driving an alternative vehicle is important in stimulating diffusion. Expanding the model boundary to include learning, technological spillovers, and spatial coevolution of fueling infrastructure adds additional feedbacks that condition the diffusion of alternative vehicles. Results show scenarios for successful diffusion of alternative vehicles, but also suggest that marketing programs and subsidies for alternatives must remain in place for long periods for diffusion to become self-sustaining.

Suggested Citation

  • Jeroen Struben & John D Sterman, 2008. "Transition challenges for alternative fuel vehicle and transportation systems," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 35(6), pages 1070-1097, November.
  • Handle: RePEc:pio:envirb:v:35:y:2008:i:6:p:1070-1097

    Download full text from publisher

    File URL:
    File Function: abstract
    Download Restriction: Fulltext access restricted to subscribers, see for details

    File URL:
    File Function: main text
    Download Restriction: Fulltext access restricted to subscribers, see for details

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. John Cooper, 1999. "Artificial neural networks versus multivariate statistics: An application from economics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 909-921.
    2. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    3. Nag, Ashok K & Mitra, Amit, 2002. "Forecasting Daily Foreign Exchange Rates Using Genetically Optimized Neural Networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 501-511, November.
    4. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    5. Baker, Bruce D. & Richards, Craig E., 1999. "A comparison of conventional linear regression methods and neural networks for forecasting educational spending," Economics of Education Review, Elsevier, vol. 18(4), pages 405-415, October.
    6. Manfred M. Fischer & Yee Leung, 1998. "A genetic-algorithms based evolutionary computational neural network for modelling spatial interaction data," ERSA conference papers ersa98p478, European Regional Science Association.
    7. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    8. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    9. Longhi, Simonetta & Nijkamp, Peter & Reggiani, Aura & Blien, Uwe, 2002. "Forecasting regional labour markets in Germany: an evaluation of the performance of neural network analysis," ERSA conference papers ersa02p117, European Regional Science Association.
    10. Reggiani, Aura & Nijkamp, Peter & Sabella, Enrico, 2001. "New advances in spatial network modelling: Towards evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 128(2), pages 385-401, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pio:envirb:v:35:y:2008:i:6:p:1070-1097. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Neil Hammond). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.