IDEAS home Printed from
   My bibliography  Save this article

Statistical tests for spatial nonstationarity based on the geographically weighted regression model


  • Yee Leung
  • Chang-Lin Mei
  • Wen-Xiu Zhang


Geographically weighted regression (GWR) is a way of exploring spatial nonstationarity by calibrating a multiple regression model which allows different relationships to exist at different points in space. Nevertheless, formal testing procedures for spatial nonstationarity have not been developed since the inception of the model. In this paper the authors focus mainly on the development of statistical testing methods relating to this model. Some appropriate statistics for testing the goodness of fit of the GWR model and for testing variation of the parameters in the model are proposed and their approximated distributions are investigated. The work makes it possible to test spatial nonstationarity in a conventional statistical manner. To substantiate the theoretical arguments, some simulations are run to examine the power of the statistics for exploring spatial nonstationarity and the results are encouraging. To streamline the model, a stepwise procedure for choosing important independent variables is also formulated. In the last section, a prediction problem based on the GWR model is studied, and a confidence interval for the true value of the dependent variable at a new location is also established. The study paves the path for formal analysis of spatial nonstationarity on the basis of the GWR model.

Suggested Citation

  • Yee Leung & Chang-Lin Mei & Wen-Xiu Zhang, 2000. "Statistical tests for spatial nonstationarity based on the geographically weighted regression model," Environment and Planning A, Pion Ltd, London, vol. 32(1), pages 9-32, January.
  • Handle: RePEc:pio:envira:v:32:y:2000:i:1:p:9-32

    Download full text from publisher

    File URL:
    File Function: abstract
    Download Restriction: Fulltext access restricted to subscribers, see for details

    File URL:
    File Function: main text
    Download Restriction: Fulltext access restricted to subscribers, see for details

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pio:envira:v:32:y:2000:i:1:p:9-32. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Neil Hammond). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.