IDEAS home Printed from https://ideas.repec.org/a/pio/envira/v17y1985i3p397-412.html
   My bibliography  Save this article

An adjacency constraint in agglomerative hierarchical classifications of geographic data

Author

Listed:
  • C R Margules
  • D P Faith
  • L Belbin

Abstract

A numerical method for classifying geographic data is presented which incorporates geographic location as an external constraint. The method was implemented by making minimal changes to an existing agglomerative hierarchical algorithm. This was seen as the simplest solution, both computationally and operationally. Given a matrix of similarities or distances calculated from the usual intrinsic variables, the classification proceeds normally with the constraint that only adjacent objects are allowed to form groups. The method has been implemented previously, but here the examination of it is extended to cover the effects of a range of different fusion strategies, and to consider chances in within-group heterogeneity as a result of imposing an adjacency constraint. Three other matters arising are discussed: the presence of regional as opposed to global outliers of a classification; the occurrence of reversals in similarity values; and a measure of the stress imposed on a classification with an adjacency constraint. The method is seen as suggesting a possible general solution to the problem of constraints in numerical classification. Some examples of other constraints and the appropriate fusion strategies are given.

Suggested Citation

  • C R Margules & D P Faith & L Belbin, 1985. "An adjacency constraint in agglomerative hierarchical classifications of geographic data," Environment and Planning A, Pion Ltd, London, vol. 17(3), pages 397-412, March.
  • Handle: RePEc:pio:envira:v:17:y:1985:i:3:p:397-412
    as

    Download full text from publisher

    File URL: http://www.envplan.com/abstract.cgi?id=a170397
    File Function: abstract
    Download Restriction: Fulltext access restricted to subscribers, see http://www.envplan.co.uk/A.html for details

    File URL: http://www.envplan.com/epa/fulltext/a17/a170397.pdf
    File Function: main text
    Download Restriction: Fulltext access restricted to subscribers, see http://www.envplan.co.uk/A.html for details

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gordon, A. D., 1996. "A survey of constrained classification," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 17-29, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pio:envira:v:17:y:1985:i:3:p:397-412. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Neil Hammond). General contact details of provider: http://www.pion.co.uk .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.