IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-65039-w.html
   My bibliography  Save this article

Cross-modal deep generative models reveal the cortical representation of dancing

Author

Listed:
  • Yu Takagi

    (The University of Tokyo, Department of Psychology, Graduate School of Humanities and Sociology
    NICT, Center for Information and Neural Networks (CiNet)
    The University of Osaka, Graduate School of Frontier Biosciences
    Graduate School of Engineering, Nagoya Institute of Technology)

  • Daichi Shimizu

    (Kobe University, Graduate School of Human Development and Environment)

  • Mina Wakabayashi

    (The University of Tokyo, Department of Psychology, Graduate School of Humanities and Sociology)

  • Ryu Ohata

    (The University of Tokyo, Department of Psychology, Graduate School of Humanities and Sociology
    The University of Tokyo, Research Into Artifacts, Center for Engineering
    ATR Cognitive Mechanisms Laboratories
    National Institute of Advanced Industrial Science and Technology (AIST), Human Informatics and Interaction Research Institute)

  • Hiroshi Imamizu

    (The University of Tokyo, Department of Psychology, Graduate School of Humanities and Sociology
    The University of Tokyo, Research Into Artifacts, Center for Engineering
    ATR Cognitive Mechanisms Laboratories)

Abstract

Dance is an ancient, holistic art form practiced worldwide throughout human history. Although it offers a window into cognition, emotion, and cross‑modal processing, fine‑grained quantitative accounts of how its diverse information is represented in the brain have rarely been performed. Here, we relate features from a cross‑modal deep generative model of dance to functional magnetic resonance imaging responses while participants watched naturalistic dance clips. We demonstrate that cross-modal features explain dance‑evoked brain activity better than low‑level motion and audio features. Using encoding models as in silico simulators, we quantify how dances that elicit different emotions yield distinct neural patterns. While expert dancers’ brain activity is more broadly explained by dance features than that of novices, experts exhibit greater individual variability. Our approach links cross-modal representations from generative models to naturalistic neuroimaging, clarifying how motion, music, and expertise jointly shape aesthetic and emotional experience.

Suggested Citation

  • Yu Takagi & Daichi Shimizu & Mina Wakabayashi & Ryu Ohata & Hiroshi Imamizu, 2025. "Cross-modal deep generative models reveal the cortical representation of dancing," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65039-w
    DOI: 10.1038/s41467-025-65039-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-65039-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-65039-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander G. Huth & Wendy A. de Heer & Thomas L. Griffiths & Frédéric E. Theunissen & Jack L. Gallant, 2016. "Natural speech reveals the semantic maps that tile human cerebral cortex," Nature, Nature, vol. 532(7600), pages 453-458, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandan Singh & Armin Askari & Rich Caruana & Jianfeng Gao, 2023. "Augmenting interpretable models with large language models during training," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Ziliang Zhu & Huichao Yang & Haojie Wen & Jinyi Hung & Yueqin Hu & Yanchao Bi & Xi Yu, 2025. "Innate network mechanisms of temporal pole for semantic cognition in neonatal and adult twin studies," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    3. Beau Sievers & Christopher Welker & Uri Hasson & Adam M. Kleinbaum & Thalia Wheatley, 2024. "Consensus-building conversation leads to neural alignment," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Sreejan Kumar & Theodore R. Sumers & Takateru Yamakoshi & Ariel Goldstein & Uri Hasson & Kenneth A. Norman & Thomas L. Griffiths & Robert D. Hawkins & Samuel A. Nastase, 2024. "Shared functional specialization in transformer-based language models and the human brain," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Lorenza Lucchi Basili & Pier Luigi Sacco, 2017. "Tie-Up Cycles in Long-Term Mating. Part II: Fictional Narratives and the Social Cognition of Mating," Challenges, MDPI, vol. 8(1), pages 1-60, February.
    6. Desjardins, Christoph, 2021. "Don't be too SMART, but SAVE your goals: Proposal for a renewed goal-setting formula for Generation Y," Journal of Applied Leadership and Management, Hochschule Kempten - University of Applied Sciences, Professional School of Business & Technology, vol. 9, pages 73-87.
    7. Maryam Honari-Jahromi & Brea Chouinard & Esti Blanco-Elorrieta & Liina Pylkkänen & Alona Fyshe, 2021. "Neural representation of words within phrases: Temporal evolution of color-adjectives and object-nouns during simple composition," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-17, March.
    8. Xue L. Gong & Alexander G. Huth & Fatma Deniz & Keith Johnson & Jack L. Gallant & Frédéric E. Theunissen, 2023. "Phonemic segmentation of narrative speech in human cerebral cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Laurent Caplette & Nicholas B. Turk-Browne, 2024. "Computational reconstruction of mental representations using human behavior," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. David M Alexander & Tonio Ball & Andreas Schulze-Bonhage & Cees van Leeuwen, 2019. "Large-scale cortical travelling waves predict localized future cortical signals," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-34, November.
    11. Ariel Goldstein & Avigail Grinstein-Dabush & Mariano Schain & Haocheng Wang & Zhuoqiao Hong & Bobbi Aubrey & Samuel A. Nastase & Zaid Zada & Eric Ham & Amir Feder & Harshvardhan Gazula & Eliav Buchnik, 2024. "Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Sebastian P. H. Speer & Laetitia Mwilambwe-Tshilobo & Lily Tsoi & Shannon M. Burns & Emily B. Falk & Diana I. Tamir, 2024. "Hyperscanning shows friends explore and strangers converge in conversation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Jörn Diedrichsen & Nikolaus Kriegeskorte, 2017. "Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-33, April.
    14. Masahiro Yamashita & Rieko Kubo & Shinji Nishimoto, 2025. "Conversational content is organized across multiple timescales in the brain," Nature Human Behaviour, Nature, vol. 9(10), pages 2066-2078, October.
    15. Refael Tikochinski & Ariel Goldstein & Yoav Meiri & Uri Hasson & Roi Reichart, 2025. "Incremental accumulation of linguistic context in artificial and biological neural networks," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Katherine Farrow & Gilles Grolleau & Naoufel Mzoughi, 2018. "What in the Word! The Scope for the Effect of Word Choice on Economic Behavior," Kyklos, Wiley Blackwell, vol. 71(4), pages 557-580, November.
    17. Sam V Norman-Haignere & Josh H McDermott, 2018. "Neural responses to natural and model-matched stimuli reveal distinct computations in primary and nonprimary auditory cortex," PLOS Biology, Public Library of Science, vol. 16(12), pages 1-46, December.
    18. Keiko Ohmae & Shogo Ohmae, 2024. "Emergence of syntax and word prediction in an artificial neural circuit of the cerebellum," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Timothy N Rubin & Oluwasanmi Koyejo & Krzysztof J Gorgolewski & Michael N Jones & Russell A Poldrack & Tal Yarkoni, 2017. "Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-24, October.
    20. Francesca Setti & Giacomo Handjaras & Davide Bottari & Andrea Leo & Matteo Diano & Valentina Bruno & Carla Tinti & Luca Cecchetti & Francesca Garbarini & Pietro Pietrini & Emiliano Ricciardi, 2023. "A modality-independent proto-organization of human multisensory areas," Nature Human Behaviour, Nature, vol. 7(3), pages 397-410, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65039-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.