IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64263-8.html
   My bibliography  Save this article

Intrinsic ferroelectric elastomers with ultrahigh Curie temperature and fast polarization switching

Author

Listed:
  • Yuxin Wang

    (Beijing University of Chemical Technology)

  • Bowei Xu

    (Beijing University of Chemical Technology)

  • Huihui Li

    (Beijing University of Chemical Technology)

  • Xiao Chu

    (Beijing University of Chemical Technology)

  • Xiao Bai

    (Beijing University of Chemical Technology)

  • Haikuo Li

    (Beijing University of Chemical Technology)

  • Shouke Yan

    (Beijing University of Chemical Technology
    Qingdao University of Science & Technology)

  • Xiaoli Sun

    (Beijing University of Chemical Technology)

Abstract

Ferroelectric materials are well-suited for advanced wearable electronics, where elasticity and user comfort are paramount. Nevertheless, current ferroelectric elastomers, primarily based on polyvinylidene fluoride (PVDF) copolymers, suffer from low Curie temperature, poor stability under extreme conditions, and sluggish polarization switching, limiting their applicability in high-temperature environments and compromising the sensitivity of devices. To overcome these challenges, we leverage PVDF homopolymers to develop a ferroelectric elastomer with higher Curie transition temperature. Through strategic thermal crosslinking with polyethylene glycol diamine and a melt-memory effect, we have developed intrinsically ferroelectric elastomers that combine thermal stability with fast polarization switching. The materials maintain stable ferroelectric performance across a wider temperature range up to 150 °C, the highest reported for ferroelectric elastomers. Additionally, they exhibit 85% elastic recovery under 30% strain. More strikingly, under 200% strain, they demonstrate a reduction in coercive field and a two-order-of-magnitude increase in domain switching speed—features essential for high-performance and low-energy-consumption electronics. The breakthrough in high-temperature stability, fast switching dynamics and efficient low-voltage operation paves the way for a class of robust, sensitive, and responsive ferroelectric elastomers, providing a transformative platform for the future of intelligent, high-performance wearable electronics.

Suggested Citation

  • Yuxin Wang & Bowei Xu & Huihui Li & Xiao Chu & Xiao Bai & Haikuo Li & Shouke Yan & Xiaoli Sun, 2025. "Intrinsic ferroelectric elastomers with ultrahigh Curie temperature and fast polarization switching," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64263-8
    DOI: 10.1038/s41467-025-64263-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64263-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64263-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaoshi Qian & Donglin Han & Lirong Zheng & Jie Chen & Madhusudan Tyagi & Qiang Li & Feihong Du & Shanyu Zheng & Xingyi Huang & Shihai Zhang & Junye Shi & Houbing Huang & Xiaoming Shi & Jiangping Chen, 2021. "High-entropy polymer produces a giant electrocaloric effect at low fields," Nature, Nature, vol. 600(7890), pages 664-669, December.
    2. Yanfei Huang & Guanchun Rui & Qiong Li & Elshad Allahyarov & Ruipeng Li & Masafumi Fukuto & Gan-Ji Zhong & Jia-Zhuang Xu & Zhong-Ming Li & Philip L. Taylor & Lei Zhu, 2021. "Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Kun & Wang, Xiaochuan & Li, Hongxing & Zhao, Xueting & Zhang, Guangzu & Tan, Changlong & Wang, Yanxu & Li, Bing, 2025. "Large thermal hysteresis enabled caloric batteries," Applied Energy, Elsevier, vol. 377(PA).
    2. Asif Abdullah Khan & Avi Mathur & Lu Yin & Mahmoud Almadhoun & Jian Yin & Majid Haji Bagheri & Md Fahim Al Fattah & Araz Rajabi-Abhari & Ning Yan & Boxin Zhao & Vivek Maheshwari & Dayan Ban, 2024. "Breaking dielectric dilemma via polymer functionalized perovskite piezocomposite with large current density output," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Qiang Li & Luqi Wei & Ni Zhong & Xiaoming Shi & Donglin Han & Shanyu Zheng & Feihong Du & Junye Shi & Jiangping Chen & Houbing Huang & Chungang Duan & Xiaoshi Qian, 2024. "Low-k nano-dielectrics facilitate electric-field induced phase transition in high-k ferroelectric polymers for sustainable electrocaloric refrigeration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Shixian Zhang & Yuheng Fu & Xinxing Nie & Chenjian Li & Youshuang Zhou & Yaqi Wang & Juan Yi & Wenlai Xia & Yiheng Song & Qi Li & Chuanxi Xiong & Suxin Qian & Quanling Yang & Qing Wang, 2024. "Shearo-caloric effect enhances elastocaloric responses in polymer composites for solid-state cooling," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Yao Wang & Chen Huang & Ziwei Cheng & Zhenghao Liu & Yuan Zhang & Yantao Zheng & Shulin Chen & Jie Wang & Peng Gao & Yang Shen & Chungang Duan & Yuan Deng & Ce-Wen Nan & Jiangyu Li, 2024. "Halide Perovskite Inducing Anomalous Nonvolatile Polarization in Poly(vinylidene fluoride)-based Flexible Nanocomposites," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Jialin Zhang & Yanjun Liu & Peiyi Wu, 2024. "An elastic piezoelectric nanomembrane with double noise reduction for high-quality bandpass acoustics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Ze Yuan & Hui Tong & Zekai Fei & Chenyi Li & Yang Liu, 2025. "Scalable solution-processed ferroelectric polymers exhibiting markedly enhanced piezoelectricity," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    8. Yuan Lin & Congcong Chai & Zhijie Liu & Jing Wang & Shifeng Jin & Yurong Yang & Yihong Gao & Munan Hao & Xinyue Li & Yuxuan Hou & Xingyue Ma & Bingjie Wang & Zheng Wang & Yue Kan & Jie Zheng & Yang Ba, 2025. "Large low-field-driven electrocaloric effect in organic-inorganic hybrid TMCM-CdCl3," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    9. Yu, Binbin & Long, Junan & Zhang, Yingjing & Ouyang, Hongsheng & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2024. "Life cycle climate performance evaluation (LCCP) of electric vehicle heat pumps using low-GWP refrigerants towards China's carbon neutrality," Applied Energy, Elsevier, vol. 353(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64263-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.