IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64090-x.html
   My bibliography  Save this article

Global hidden material flows triggered by China’s vehicle supply chain far exceed eventual material use

Author

Listed:
  • Binze Wang

    (Tohoku University)

  • Qiance Liu

    (Peking University)

  • Xin Ouyang

    (Chinese Academy of Sciences)

  • Wu Chen

    (University of Southern Denmark)

  • Zhengyang Zhang

    (Tohoku University)

  • Gang Liu

    (Peking University
    Peking University)

  • Kazuyo Matsubae

    (Tohoku University)

Abstract

Electric mobility (e-mobility) transition is vital for reducing greenhouse gas emissions but increases demand for minerals and results in substantial ‘hidden flows’—mined materials but unused, such as overburden, waste rock, and tailings—which remain underexamined compared to battery materials. Here, we develop a global mine-site-specific database and a supply-chain-based framework to quantify the total material requirement (TMR) of passenger car supply chain, using China, the world’s largest producer and consumer for new energy vehicle (NEV), as an example. We find that an NEV generates over three times the hidden flows of a conventional vehicle. These hidden flows exceed the eventual used resources by 35 times, with only 3% of the extracted materials entering the car sector. Notably, 48% of these hidden flows occur outside manufacturing countries, highlighting the global environmental burden of China’s e-mobility transition. Our findings provide insights for balancing greenhouse gas emissions reduction with other environmental sustainability issues in the shift to e-mobility.

Suggested Citation

  • Binze Wang & Qiance Liu & Xin Ouyang & Wu Chen & Zhengyang Zhang & Gang Liu & Kazuyo Matsubae, 2025. "Global hidden material flows triggered by China’s vehicle supply chain far exceed eventual material use," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64090-x
    DOI: 10.1038/s41467-025-64090-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64090-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64090-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefan Bringezu & Helmut Schütz & Stephan Moll, 2003. "Rationale for and Interpretation of Economy‐Wide Materials Flow Analysis and Derived Indicators," Journal of Industrial Ecology, Yale University, vol. 7(2), pages 43-64, April.
    2. Lima, Ana T. & Mitchell, Kristen & O’Connell, David W. & Verhoeven, Jos & Van Cappellen, Philippe, 2016. "The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation," Environmental Science & Policy, Elsevier, vol. 66(C), pages 227-233.
    3. Northey, S. & Mohr, S. & Mudd, G.M. & Weng, Z. & Giurco, D., 2014. "Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 190-201.
    4. Xiong, Yuyu & Guo, Hongxiang & Nor, Datin Dr Mariani Md & Song, Andong & Dai, Li, 2023. "Mineral resources depletion, environmental degradation, and exploitation of natural resources: COVID-19 aftereffects," Resources Policy, Elsevier, vol. 85(PA).
    5. Alvaro Duque & Miguel A. Peña & Francisco Cuesta & Sebastián González-Caro & Peter Kennedy & Oliver L. Phillips & Marco Calderón-Loor & Cecilia Blundo & Julieta Carilla & Leslie Cayola & William Farfá, 2021. "Author Correction: Mature Andean forests as globally important carbon sinks and future carbon refuges," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    6. Chunbo Zhang & Xiang Zhao & Romain Sacchi & Fengqi You, 2023. "Trade-off between critical metal requirement and transportation decarbonization in automotive electrification," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Guiomar Calvo & Gavin Mudd & Alicia Valero & Antonio Valero, 2016. "Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?," Resources, MDPI, vol. 5(4), pages 1-14, November.
    8. Bringezu, Stefan & Schutz, Helmut & Steger, Soren & Baudisch, Jan, 2004. "International comparison of resource use and its relation to economic growth: The development of total material requirement, direct material inputs and hidden flows and the structure of TMR," Ecological Economics, Elsevier, vol. 51(1-2), pages 97-124, November.
    9. Lisa Winkler & Drew Pearce & Jenny Nelson & Oytun Babacan, 2023. "The effect of sustainable mobility transition policies on cumulative urban transport emissions and energy demand," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Alvaro Duque & Miguel A. Peña & Francisco Cuesta & Sebastián González-Caro & Peter Kennedy & Oliver L. Phillips & Marco Calderón-Loor & Cecilia Blundo & Julieta Carilla & Leslie Cayola & William Farfá, 2021. "Mature Andean forests as globally important carbon sinks and future carbon refuges," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    12. T. W. Crowther & K. E. O. Todd-Brown & C. W. Rowe & W. R. Wieder & J. C. Carey & M. B. Machmuller & B. L. Snoek & S. Fang & G. Zhou & S. D. Allison & J. M. Blair & S. D. Bridgham & A. J. Burton & Y. C, 2016. "Quantifying global soil carbon losses in response to warming," Nature, Nature, vol. 540(7631), pages 104-108, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Adewale Alola & Seyi Saint Akadiri & Ojonugwa Usman, 2021. "Domestic material consumption and greenhouse gas emissions in the EU‐28 countries: Implications for environmental sustainability targets," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 388-397, March.
    2. Valero, Alicia & Valero, Antonio & Calvo, Guiomar, 2015. "Using thermodynamics to improve the resource efficiency indicator GDP/DMC," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 110-117.
    3. Yu, Chenjian & Li, Huiquan & Jia, Xiaoping & Li, Qiang, 2015. "Improving resource utilization efficiency in China's mineral resource-based cities: A case study of Chengde, Hebei province," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 1-10.
    4. Martin J. P. Sullivan & Oliver L. Phillips & David Galbraith & Everton Almeida & Edmar Almeida Oliveira & Jarcilene Almeida & Esteban Álvarez Dávila & Luciana F. Alves & Ana Andrade & Luiz Aragão & Al, 2025. "Variation in wood density across South American tropical forests," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    5. Justin D. Gay & Bryce Currey & E. N. J. Brookshire, 2022. "Global distribution and climate sensitivity of the tropical montane forest nitrogen cycle," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Marc van der Meide & Carina Harpprecht & Stephen Northey & Yongxiang Yang & Bernhard Steubing, 2022. "Effects of the energy transition on environmental impacts of cobalt supply: A prospective life cycle assessment study on future supply of cobalt," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1631-1645, October.
    7. Jenny C Ordoñez & Esteban Pinto & Antonella Bernardi & Francisco Cuesta, 2024. "Tree mortality and recruitment in secondary Andean tropical mountain forests along a 3000 m elevation gradient," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-18, March.
    8. Aida Cuni-Sanchez & Emanuel H. Martin & Eustrate Uzabaho & Alain S. K. Ngute & Robert Bitariho & Charles Kayijamahe & Andrew R. Marshall & Nassoro A. Mohamed & Gideon A. Mseja & Aventino Nkwasibwe & F, 2024. "Evidence of thermophilization in Afromontane forests," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Ioannis Spanos & Murat Kucukvar & Timothy C. Bell & Aza Elnimah & Hanin Hamdan & Bodour Al Meer & Shashi Prakash & Orjan Lundberg & Adeeb A. Kutty & Aya H. A. AlKhereibi, 2022. "How FIFA World Cup 2022™ can meet the carbon neutral commitments and the United Nations 2030 Agenda for Sustainable Development?: Reflections from the tree nursery project in Qatar," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 203-226, February.
    10. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    11. Niza, Samuel & Ferrão, Paulo, 2006. "A transitional economy's metabolism: The case of Portugal," Resources, Conservation & Recycling, Elsevier, vol. 46(3), pages 265-280.
    12. Ma, Hongchao & Zhang, Haonan, 2024. "Can green energy expansion develop the mineral resource market in East Asia?," Resources Policy, Elsevier, vol. 90(C).
    13. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    14. Li, Xinqiang & Wang, Cheng, 2024. "Clean Energy's influence on the mineral resource market in the ASEAN region," Resources Policy, Elsevier, vol. 91(C).
    15. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.
    16. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    17. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    18. Iain P. Hartley & Tim C. Hill & Sarah E. Chadburn & Gustaf Hugelius, 2021. "Temperature effects on carbon storage are controlled by soil stabilisation capacities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    19. James McNeice & Harshit Mahandra & Ahmad Ghahreman, 2022. "Biogenic Production of Thiosulfate from Organic and Inorganic Sulfur Substrates for Application to Gold Leaching," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    20. Ye, Hui & Wu, Fei & Yan, Tiantian & Li, Zexuan & Zheng, Zhengnan & Zhou, Dequn & Wang, Qunwei, 2024. "Decarbonizing urban passenger transportation: Policy effectiveness and interactions," Energy, Elsevier, vol. 311(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64090-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.