IDEAS home Printed from https://ideas.repec.org/a/lrk/eeaart/36_3_15.html
   My bibliography  Save this article

Dinámicas laborales regionales y su relevancia en el agregado nacional: Una aplicación de Clusterización de Series Temporales para Chile/Regional Labor Dynamics and their Relevance in the National Aggregate: A Time Series Clustering Application for Chile

Author

Listed:
  • CHÁVEZ BUSTAMANTE, FELIPE O. G.

    () (Universidad del Desarrollo, Facultad de Economía y Negocios, Ainavillo 456, 4030000, Concepción, Chile.)

  • MONDACA-MARINO, CRISTIAN

    () (Universidad Austral de Chile, Instituto de Economía, Los Laureles nº35 interior, 5110027, Campus Isla Teja, Valdivia Chile.)

  • ROJAS-MORA, JULIO

    () (Universidad Católica de Temuco, Departamento de Ingeniería Informática, Avenida Rudecindo Ortega 02950, 4781312, Campus San Juan Pablo II, Temuco, Chile.)

Abstract

Este trabajo tiene como objetivo analizar el comportamiento de la ocupación en el mercado del trabajo en Chile a nivel regional, determinando las diferencias y similitudes entre regiones, y de las regiones con el agregado de empleo a nivel nacional. Para la realización de dicho trabajo se han utilizado las tasas mensuales de ocupación regionales y a nivel país para el periodo 1986-2010, y utilizado métodos de Clusterización de series temporales para identificar conjuntos de regiones con comportamientos similares. Los resultados muestran la existencia de diferentes regímenes en los mercados laborales de las regiones y el relevante rol de algunas regiones en el comportamiento del agregado nacional. The objective of this work is to analyze the employment behavior in the labor market in Chile at the regional level, determining the differences and similarities between regions, and of the regions with the aggregate employment at the national level. For this work, we studied the monthly regional employment rates during the 1986-2010 period for Chile by applying time series clustering methods to identify regions with similar dynamics. Afterward, we use that information to build a model that explains the contributions from the regional markets to the national aggregate. Results show the existence of regimes on the local labor markets and the relevance of the Metropolitan Region on the country-level behavior.

Suggested Citation

  • Chávez Bustamante, Felipe O. G. & Mondaca-Marino, Cristian & Rojas-Mora, Julio, 2018. "Dinámicas laborales regionales y su relevancia en el agregado nacional: Una aplicación de Clusterización de Series Temporales para Chile/Regional Labor Dynamics and their Relevance in the National Agg," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 961-978, Septiembr.
  • Handle: RePEc:lrk:eeaart:36_3_15
    as

    Download full text from publisher

    File URL: http://www.revista-eea.net
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mauricio Gallardo & Hernán Rubio, 2009. "Diagnóstico de estacionalidad con X-12-ARIMA," Economic Statistics Series 76, Central Bank of Chile.
    2. Juan Gabriel Brida & Juan Pereyra & Martín Puchet Anyul & Wiston Adrián Risso, 2011. "Regímenes de desempeño económico y dualismo estructural en la dinámica de las entidades federativas de México, 1970 - 2006," Documentos de Trabajo (working papers) 1011, Department of Economics - dECON.
    3. Ahlquist, John S. & Breunig, Christian, 2009. "Country clustering in comparative political economy," MPIfG Discussion Paper 09/5, Max Planck Institute for the Study of Societies.
    4. Alonso, A.M. & Berrendero, J.R. & Hernandez, A. & Justel, A., 2006. "Time series clustering based on forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 762-776, November.
    5. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    6. Brida, Juan Gabriel & Garrido, Nicolás & Matesanz Gómez , David, 2015. "Análisis jerárquico de la dinámica económica de las comunidades españolas en el periodo 1955-2009," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 31, pages 121-141.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamer Khraisha & Keren Arthur, 2018. "Can we have a general theory of financial innovation processes? A conceptual review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-27, December.
    2. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    3. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    4. Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
    5. Alonso, Andres M. & Sipols, Ana E., 2008. "A time series bootstrap procedure for interpolation intervals," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1792-1805, January.
    6. Brida, Juan Gabriel & London, Silvia & Rojas, Mara, 2012. "Convergencia interregional en dinámica de regimenes: el caso del Mercosur [Regional convergence of dynamic of regimens: the case of Mercosur]," MPRA Paper 36863, University Library of Munich, Germany.
    7. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    8. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    9. Ondřej Filip & Karel Janda & Ladislav Krištoufek, 2018. "Ceny biopaliv a souvisejících komodit: analýza s použitím metod minimální kostry grafu a hierarchických stromů [Prices of Biofuels and Related Commodities: an Analysis Using Methods of Minimum Span," Politická ekonomie, Prague University of Economics and Business, vol. 2018(2), pages 218-239.
    10. Puccio, Elena & Pajala, Antti & Piilo, Jyrki & Tumminello, Michele, 2016. "Structure and evolution of a European Parliament via a network and correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 167-185.
    11. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    12. Marcus Cobb & Maribel Jara, 2013. "Ajuste estacional de series macroeconómicas chilenas," Economic Statistics Series 98, Central Bank of Chile.
    13. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    14. Linda Ponta & Silvano Cincotti, 2018. "Traders’ Networks of Interactions and Structural Properties of Financial Markets: An Agent-Based Approach," Complexity, Hindawi, vol. 2018, pages 1-9, January.
    15. Bastidon, Cécile & Parent, Antoine & Jensen, Pablo & Abry, Patrice & Borgnat, Pierre, 2020. "Graph-based era segmentation of international financial integration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    16. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    17. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    18. Gustavo Peralta, 2015. "Network-based Measures as Leading Indicators of Market Instability: The case of the Spanish Stock," CNMV Working Papers CNMV Working Papers no 59, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    19. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
    20. Markus Ahlborn & Joachim Ahrens & Rainer Schweickert, 2016. "Large-Scale Transition of Economic Systems – Do CEECs Converge Toward Western Prototypes?," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 58(3), pages 430-454, September.

    More about this item

    Keywords

    Mercado Laboral Regional; Clusterización de Series Temporales; Ocupación ; Regional Labor Market; Time Series Clustering; Employment..;
    All these keywords.

    JEL classification:

    • J64 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Unemployment: Models, Duration, Incidence, and Job Search
    • R23 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Regional Migration; Regional Labor Markets; Population
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lrk:eeaart:36_3_15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Miguel Angel Sanchez Granero). General contact details of provider: http://edirc.repec.org/data/fcvldes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.