IDEAS home Printed from https://ideas.repec.org/a/lrk/eeaart/29_3_3.html
   My bibliography  Save this article

Modelling International Monthly Tourist in Spain/Modelización de llegadas mensuales de turistas a España

Author

Listed:
  • JUNCAL CUÑADO

    () (Departamento de Economía y Métodos Cuantitativos, UNIVERSIDAD DE NAVARRA, ESPAÑA.)

  • ALBERIKO GIL-ALANA, LUIS

    () (Departamento de Economía y Métodos Cuantitativos, UNIVERSIDAD DE NAVARRA, ESPAÑA.)

  • PEREZ DE GRACIA, FERNANDO

    () (Departamento de Economía y Métodos Cuantitativos, UNIVERSIDAD DE NAVARRA, ESPAÑA.)

Abstract

This article investigates the degree of persistence in the international monthly tourist time series in Spain using long memory (fractional integration) techniques. Our findings can be summarized as follows. The two standard hypotheses of integer degrees of differentiation, i.e., the I(0) and the I(1) behaviour, are clearly rejected. The series is found to be I(d) with a value of d in the interval (0.421, 0.780) thus implying long memory behaviour and mean reverting behaviour. However, if a structural break is considered, it takes place at May 2007, and then, the two subsamples present orders of integration which are above 1 and thus rejecting the mean reverting hypothesis. Este trabajo investiga el grado de persistencia en las llegadas internacionales de turistas a España empleando técnicas de integración fraccional. Los resultados que se obtienen son los siguientes. Los resultados sugieren que las hipótesis de I(0) e I(1) se rechazan y que la serie de llegada de turistas a España se puede modelizar como una serie I(d) donde d toma valores en el intervalo (0.421, 0.780) implicando un proceso de memora larga y con reversion a la media. Sin embargo, teniendo en cuenta la existencia de un cambio estructural, este ocurre en Mayo del 2007, y las dos submuestras son entonces integradas fraccionalmente con un parámetro de integración superior a 1 en ambas submuestras, y rechazando por tanto la hipótesis de reversión a la media.

Suggested Citation

  • Juncal Cuñado & Alberiko Gil-Alana, Luis & Perez De Gracia, Fernando, 2011. "Modelling International Monthly Tourist in Spain/Modelización de llegadas mensuales de turistas a España," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 29, pages 723-736, Diciembre.
  • Handle: RePEc:lrk:eeaart:29_3_3
    as

    Download full text from publisher

    File URL: http://www.revista-eea.net
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia-Ferrer, Antonio & Queralt, Ricardo A., 1997. "A note on forecasting international tourism demand in Spain," International Journal of Forecasting, Elsevier, vol. 13(4), pages 539-549, December.
    2. Walter Kramer & Philipp Sibbertsen, 2002. "Testing for Structural Changes in the Presence of Long Memory," International Journal of Business and Economics, College of Business and College of Finance, Feng Chia University, Taichung, Taiwan, vol. 1(3), pages 235-242, December.
    3. Michael Dueker & Richard Startz, 1998. "Maximum-Likelihood Estimation Of Fractional Cointegration With An Application To U.S. And Canadian Bond Rates," The Review of Economics and Statistics, MIT Press, vol. 80(3), pages 420-426, August.
    4. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    5. Godfrey, Leslie G, 1978. "Testing for Higher Order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1303-1310, November.
    6. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    7. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    8. Luis A. Gil-Alana, 2008. "Fractional integration and structural breaks at unknown periods of time," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 163-185, January.
    9. Christine Lim & Michael McAleer, 2001. "Time Series Forecasts of International Tourism Demand for Australia," ISER Discussion Paper 0533, Institute of Social and Economic Research, Osaka University.
    10. Christine Lim & Michael McAleer, 2001. "Cointegration analysis of quarterly tourism demand by Hong Kong and Singapore for Australia," Applied Economics, Taylor & Francis Journals, vol. 33(12), pages 1599-1619.
    11. Durbin, J, 1970. "Testing for Serial Correlation in Least-Squares Regression When Some of the Regressors are Lagged Dependent Variables," Econometrica, Econometric Society, vol. 38(3), pages 410-421, May.
    12. Luis A. Gil-Alana & Juncal Cunado & Fernando Perez de Gracia, 2008. "Tourism in the Canary Islands: forecasting using several seasonal time series models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 621-636.
    13. Kulendran, N. & King, Maxwell L., 1997. "Forecasting international quarterly tourist flows using error-correction and time-series models," International Journal of Forecasting, Elsevier, vol. 13(3), pages 319-327, September.
    14. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
    15. Koenker, Roger, 1981. "A note on studentizing a test for heteroscedasticity," Journal of Econometrics, Elsevier, vol. 17(1), pages 107-112, September.
    16. Michael Vogt & Chutima Wittayakorn, 1998. "Determinants of the demand for Thailand's exports of tourism," Applied Economics, Taylor & Francis Journals, vol. 30(6), pages 711-715.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Persistencia; turistas; integración fraccional ; Persistence; Tourists; Fractional Integration.;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lrk:eeaart:29_3_3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Beatriz Rodríguez Prado). General contact details of provider: http://edirc.repec.org/data/fcvldes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.