IDEAS home Printed from https://ideas.repec.org/a/lrk/eeaart/18_2_10.html
   My bibliography  Save this article

Un análisis del mercado de la vivienda a través de redes neuronales artificiales

Author

Listed:
  • CARIDAD Y OCERÍN, J.M.

    (Dpto. de Estadística, I.O. Econometría y Org. Empresas. Universidad de Córdoba.)

  • CEULAR VILLAMANDOS, N.

    (Dpto. de Estadística, I.O. Econometría y Org. Empresas. Universidad de Córdoba.)

Abstract

El análisis del mercado de la vivienda, como parte fundamental en el desarrollo de la Economía Urbana de una región y por agregación de un determinado país, se ha constituido en una de las principales líneas de investigación de la última década. Debido al continuo incremento de los precios en dicho mercado, se están manteniendo interesantes debates acerca de las causas de este pernicioso proceso y de las políticas a aplicar para mejorar el estado de bienestar social. En los últimos años se están replanteando los trabajos de Rosen (1974), emergiendo un nuevo concepto de vivienda como conjunto de atributos que le confieren identidad propia, haciendo que unidades de igual precio puedan ser contempladas por oferentes y demandantes como bienes sustancialmente diferentes. Con este propósito, se introduce la metodología hedónica para analizar el precio de un bien en función de sus características, a través de la estimación de los precios implícitos de sus componentes. El desarrollo de la Inteligencia Artificial permite la utilización de sistemas de redes neuronales como alternativa a los métodos econométricos de modelización tradicional. En el presente trabajo se pretende desarrollar una estructura del tipo perceptrón multicapa como herramienta de predicción del precio de la vivienda. La comparación de los resultados obtenidos con ambos modelos, muestra una considerable mejora en la precisión de las valoraciones con la utilización de sistemas neuronales artificiales. The real state market is a fundamental part of Regional Urban Economics, and it has been intensive research has been developed in the last decade. The increases in the house prices have originated a broad debate over its causes, and the policy necessary to increase the general well being. The classical S. Rosen (1974) paper consider a dwelling as a set of attributes that can be valued different by the consumers, through their hedonic prices. An alternative, based on A.I. developments is proposed: a multilayer perceptron neural network is used to estimate house prices. The results obtained in a case study show statistical advantages over the classical hedonic methodology, with an increased accuracy.

Suggested Citation

  • Caridad Y Ocerín, J.M. & Ceular Villamandos, N., 2001. "Un análisis del mercado de la vivienda a través de redes neuronales artificiales," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 18, pages 67-81, Agosto.
  • Handle: RePEc:lrk:eeaart:18_2_10
    as

    Download full text from publisher

    File URL: http://www.revista-eea.net
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosen, Sherwin, 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition," Journal of Political Economy, University of Chicago Press, vol. 82(1), pages 34-55, Jan.-Feb..
    2. Phil Graves & James C. Murdoch & Mark A. Thayer & Don Waldman, 1988. "The Robustness of Hedonic Price Estimation: Urban Air Quality," Land Economics, University of Wisconsin Press, vol. 64(3), pages 220-233.
    3. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74, pages 132-132.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Urban economics; housing prices; neural networks; hedonic models.;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • L74 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Construction

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lrk:eeaart:18_2_10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Beatriz Rodríguez Prado). General contact details of provider: http://edirc.repec.org/data/fcvldes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.