IDEAS home Printed from https://ideas.repec.org/a/lrk/eeaart/15_2_3.html
   My bibliography  Save this article

Comparación de la capacidad predictiva de los modelos de coeficientes fijos frente a variables en los modelos econométricos regionales: un análisis para Cataluña

Author

Listed:
  • RAMOS LOBO, R.

    (Grupo de Investigación Anàlisi Quantitativa Regional.Departamento de Econometría, Estadística y Economía Española. Facultad de Ciencias Económicas y Empresariales. Universidad de Barcelona)

  • CLAR LÓPEZ, M.

    (Grupo de Investigación Anàlisi Quantitativa Regional. Departamento de Econometría, Estadística y Economía Española. Facultad de Ciencias Económicas y Empresariales Universidad de Barcelona)

  • SURIÑACH CARALT, J.

    (Grupo de Investigación Anàlisi Quantitativa Regional. Departamento de Econometría, Estadística y Economía Española. Facultad de Ciencias Económicas y Empresariales. Universidad de Barcelona)

Abstract

Durante las últimas décadas se ha producido un creciente interés en nuestro país en relación a las economías regionales dada la necesidad de los gobiernos regionales de obtener información sobre sus economías para así llevar a cabo actuaciones de política económica más efectivas y eficientes. En este marco, los modelos econométricos constituyen una herramienta de utilidad puesto que ofrecen información sobre las relaciones estructurales que se dan en una economía y permiten predecir su evolución. Sin embargo, la utilización de dichos modelos con finalidad predictiva se enfrenta al inconveniente de la elevada inestabilidad a corto plazo que se produce en las relaciones entre variables económicas a nivel regional. Por este motivo, en el presente trabajo se propone la utilización de un modelo de coeficientes variables para recoger dicha inestabilidad y mejorar las predicciones sobre la evolución de las variables del bloque de producción de la economía catalana. Para contrastar la mejora obtenida a partir de la aplicación de dicho modelo, se compara su capacidad predictiva con la de un modelo de coeficientes fijos. Los resultados muestran un mejor comportamiento del modelo de coeficientes variables frente al modelo de coeficientes fijos. During the last decades, there has been a growing interest in Spain in the issues related to regional economies. This interest is related to the need of regional governments to obtain information about their economies and act efficiently. In this context, econometric models are useful tools to offer information about the structural relationships of the economy and also to predict their evolution. However, the predictive capacity of these models is adversely affected by the potential instability of the relationships between economic variables at a regional level. For this reason, in this article we present a time-varying coefficient model to improve the predictions of an econometric model for the production block variables of the Catalan economy. To validate the proposed methodology preditions with a fixed coefficient model and with the varying coefficient one are compared. The results obtained show a better behaviour of the last one in changing situations for economic relationships.

Suggested Citation

  • Ramos Lobo, R. & Clar López, M. & Suriñach Caralt, J., 2000. "Comparación de la capacidad predictiva de los modelos de coeficientes fijos frente a variables en los modelos econométricos regionales: un análisis para Cataluña," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 15, pages 125-162, Agosto.
  • Handle: RePEc:lrk:eeaart:15_2_3
    as

    Download full text from publisher

    File URL: http://www.revista-eea.net
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kremers, Jeroen J M & Ericsson, Neil R & Dolado, Juan J, 1992. "The Power of Cointegration Tests," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 325-348, August.
    2. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    3. Hackl, Peter & Westlund, Anders H., 1996. "Demand for international telecommunication time-varying price elasticity," Journal of Econometrics, Elsevier, vol. 70(1), pages 243-260, January.
    4. Kalaba, R. & Tesfatsion, L., 1990. "A further note on flexible least squares and Kalman filtering," Journal of Economic Dynamics and Control, Elsevier, vol. 14(1), pages 183-185, February.
    5. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    6. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    7. Brown, Scott J. & Coulson, N. Edward & Engle, Robert F., 1992. "On the determination of regional base and regional base multipliers," Regional Science and Urban Economics, Elsevier, vol. 22(4), pages 619-635, November.
    8. Hendry, David F & Mizon, Grayham E, 1978. "Serial Correlation as a Convenient Simplification, not a Nuisance: A Comment on a Study of the Demand for Money by the Bank of England," Economic Journal, Royal Economic Society, vol. 88(351), pages 549-563, September.
    9. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
    10. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    11. Lesage, James P. & Reed, J. David, 1989. "The dynamic relationship between export, local, and total area employment," Regional Science and Urban Economics, Elsevier, vol. 19(4), pages 615-636, December.
    12. Dickey, David A & Pantula, Sastry G, 1987. "Determining the Ordering of Differencing in Autoregressive Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 455-461, October.
    13. Nijkamp, Peter & Rietveld, Piet & Snickars, Folke, 1987. "Regional and multiregional economic models: A survey," Handbook of Regional and Urban Economics,in: P. Nijkamp (ed.), Handbook of Regional and Urban Economics, edition 1, volume 1, chapter 7, pages 257-294 Elsevier.
    14. Gonzalo, Jesus, 1994. "Five alternative methods of estimating long-run equilibrium relationships," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 203-233.
    15. Shively, Thomas S. & Kohn, Robert, 1997. "A Bayesian approach to model selection in stochastic coefficient regression models and structural time series models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 39-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:lrk:eeaart:35_2_5 is not listed on IDEAS
    2. Miquel Clar-Lopez & Jordi López-Tamayo & Raúl Ramos, 2014. "Unemployment forecasts, time varying coefficient models and the Okun’s law in Spanish regions," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 247-262.

    More about this item

    Keywords

    Regional econometric models; forecasting; time-varying coefficient models; cointegration; Kalman filter.;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lrk:eeaart:15_2_3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Beatriz Rodríguez Prado). General contact details of provider: http://edirc.repec.org/data/fcvldes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.