IDEAS home Printed from
   My bibliography  Save this article

Linear Estimation Under Superpopulation Models: Somo Results On Robustness



    (Universidad de Alcalá de Henares)


    (Universidad de Cantabria)


The present article examines the linear estimation of a finite population mean, under a regression superpopulation model with unknown parameters and correlated residuals. Asymptotic design unbiasedness and weak robustness are desirable properties of the estimators when the model is misspecified. In this sense, two procedures of choosing among weakly robust and asymptotically design ubiased linear estimators, are suggested. Este trabajo examina la estimación lineal de la media en una población finita, desde el punto de vista de los modelos de superpoblación con parámetros desconocidos y coeficiente de correlación no nulo. La insesgadez asintótica según el diseño de muestreo y la robusted débil son propiedades deseables del estimador cuando se cometen errores en la especificación del modelo. En este sentido, se presentan dos procedimientos de selección entre estimadores asintóticamente insesgados respecto al diseño y débilmente robustos.

Suggested Citation

  • Casas Sánchez, J.M. & Guijarro Garvi, M, 2000. "Linear Estimation Under Superpopulation Models: Somo Results On Robustness," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 14, pages 37-46, Abril.
  • Handle: RePEc:lrk:eeaart:14_1_8

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Superpopulation Model; Linear Estimation; Asymptotic Design Unbiasedness; Weakly Robustness.;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lrk:eeaart:14_1_8. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Beatriz Rodríguez Prado). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.