IDEAS home Printed from
   My bibliography  Save this article

El pesar en el proceso analítico jerárquico1



    (Departamento Métodos Estadísticos. Universidad de Zaragoza)


    (Departamento Métodos Estadísticos. Universidad de Zaragoza)


El trabajo analiza el significado del pesar asociado a las prioridades obtenidas en el Proceso Analítico Jerárquico (AHP), y, tal y como solicitan Loomes y Sudgen (1982) para la Toma de Decisiones (TD) en general, ofrece una expresión de las prioridades de AHP en función del pesar. Se ha encontrado la relación entre el pesar, evaluado tanto en términos absolutos como en términos relativos, y las prioridades obtenidas en AHP para dos procedimientos de normalización (modo distributivo e ideal) y dos de síntesis (aditiva y multiplicativa). Se ha probado que esta relación es independiente del método de normalización, y la forma que adopta depende del método de síntesis y de la forma en que se evalúa el pesar. Si la evaluación del pesar se efectúa en términos absolutos y se emplea la síntesis aditiva se obtienen una relación aditiva; y si el pesar se evalúa en términos relativos y se utiliza la síntesis multiplicativa la relación es multiplicativa. En ambos casos la aplicación de AHP y la minimización del pesar proporcionan los mismos resultados en selección multicriterio de alternativas. The paper analyses the meaning of the regret associated with the priorities obtained with the Analytic Hierarchy Process (AHP), and, as it is required by Loomes and Sudgen (1982) for Decision Making, offers an expression of the AHP priorities in terms of the regret. We have found the relationship between the regret, evaluated both in absolute and in relative terms, and the AHP priorities obtained with two normalization methods (distributive and ideal) and two synthesis procedures (additive and multiplicative). We have proved that this relationship is independent of the normalization method employed, and that the form it adopts depends on the synthesis method and the way the regret is evaluated. If the regret is evaluated in absolute terms and the additive synthesis method is employed, the relationship has an additive form. If the regret is evaluated in relative terms and the multiplicative synthesis method is employed, the relationship is multiplicative. In both cases the application of AHP and the minimizat on of the regret provides the same results in multicriteria selection of alternatives.

Suggested Citation

  • Moreno Jiménez, J.Mª & Escobar Urmeneta, Mª T., 2000. "El pesar en el proceso analítico jerárquico1," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 14, pages 95-115, Abril.
  • Handle: RePEc:lrk:eeaart:14_1_5

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. John Quiggin, 1990. "Stochastic Dominance in Regret Theory," Review of Economic Studies, Oxford University Press, vol. 57(3), pages 503-511.
    2. Loomes, Graham & Sugden, Robert, 1983. "Regret theory and measurable utility," Economics Letters, Elsevier, vol. 12(1), pages 19-21.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Loomes, Graham & Sugden, Robert, 1982. "Regret Theory: An Alternative Theory of Rational Choice under Uncertainty," Economic Journal, Royal Economic Society, vol. 92(368), pages 805-824, December.
    5. Fishburn, Peter C., 1983. "Transitive measurable utility," Journal of Economic Theory, Elsevier, vol. 31(2), pages 293-317, December.
    6. Machina, Mark J, 1982. ""Expected Utility" Analysis without the Independence Axiom," Econometrica, Econometric Society, vol. 50(2), pages 277-323, March.
    7. Schoner, Bertram & Wedley, William C. & Choo, Eng Ung, 1993. "A unified approach to AHP with linking pins," European Journal of Operational Research, Elsevier, vol. 64(3), pages 384-392, February.
    8. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    9. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    10. Loomes, Graham & Sugden, Robert, 1987. "Testing for Regret and Disappointment in Choice under Uncertainty," Economic Journal, Royal Economic Society, vol. 97(388a), pages 118-129, Supplemen.
    11. María Escobar & José Moreno-Jiménez, 1997. "The Hierarchical compromise programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(2), pages 253-281, December.
    12. Graham Loomes & Robert Sugden, 1986. "Disappointment and Dynamic Consistency in Choice under Uncertainty," Review of Economic Studies, Oxford University Press, vol. 53(2), pages 271-282.
    13. William G. Stillwell & Detlof von Winterfeldt & Richard S. John, 1987. "Comparing Hierarchical and Nonhierarchical Weighting Methods for Eliciting Multiattribute Value Models," Management Science, INFORMS, vol. 33(4), pages 442-450, April.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Multicriteria Decision Making; Analytic Hierarchy Process (AHP); Priorities; Regret.;

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lrk:eeaart:14_1_5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Beatriz Rodríguez Prado). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.