IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Evaluating a Global Vector Autoregression for Forecasting

  • Neil Ericsson


  • Erica Reisman


Global vector autoregressions (GVARs) have several attractive features: multiple potential channels for the international transmission of macroeconomic and financial shocks, a standardized economically appealing choice of variables for each country or region examined, systematic treatment of long-run properties through cointegration analysis, and flexible dynamic specification through vector error correction modeling. Pesaran et al. ( 2009 ) generate and evaluate forecasts from a paradigm GVAR with 26 countries, based on Dées, di Mauro et al. ( 2007 ). The current paper empirically assesses the GVAR in Dées, di Mauro et al. ( 2007 ) with impulse indicator saturation (IIS)—a new generic procedure for evaluating parameter constancy, which is a central element in model-based forecasting. The empirical results indicate substantial room for an improved, more robust specification of that GVAR. Some tests are suggestive of how to achieve such improvements. Copyright International Atlantic Economic Society 2012

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by International Atlantic Economic Society in its journal International Advances in Economic Research.

Volume (Year): 18 (2012)
Issue (Month): 3 (August)
Pages: 247-258

in new window

Handle: RePEc:kap:iaecre:v:18:y:2012:i:3:p:247-258
Contact details of provider: Postal: Suite 650, International Tower, 229 Peachtree Street, N.E., Atlanta, GA 30303
Phone: (404) 965-1555
Fax: (404) 965-1556
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Neil R. Ericsson & David F. Hendry & Grayham E. Mizon, 1998. "Exogeneity, cointegration, and economic policy analysis," International Finance Discussion Papers 616, Board of Governors of the Federal Reserve System (U.S.).
  2. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
  3. Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Universite de Montreal, Departement de sciences economiques.
  4. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
  5. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, July.
  6. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Rejoinder to comments on forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 703-715, October.
  7. Chudik, Alexander & Pesaran, Hashem, 2009. "Infinite-dimensional VARs and factor models," Working Paper Series 0998, European Central Bank.
  8. Kevin D. Hoover & Stephen J. Perez, 2004. "Truth and Robustness in Cross-country Growth Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(5), pages 765-798, December.
  9. Garratt, Anthony & Lee, Kevin & Pesaran, M. Hashem & Shin, Yongcheol, 2012. "Global and National Macroeconometric Modelling: A Long-Run Structural Approach," OUP Catalogue, Oxford University Press, number 9780199650460, July.
  10. Frank Smets & Raf Wouters, 2007. "Shocks and Frictions in US Business Cycles : a Bayesian DSGE Approach," Working Paper Research 109, National Bank of Belgium.
  11. Erceg, Christopher & Guerriei, Luca & Gust, Christopher, 2006. "SIGMA: A New Open Economy Model for Policy Analysis," MPRA Paper 813, University Library of Munich, Germany.
  12. Kevin D. Hoover & Stephen J. Perez, . "Data Mining Reconsidered: Encompassing And The General-To-Specific Approach To Specification Search," Department of Economics 97-27, California Davis - Department of Economics.
  13. Jennifer L. Castle & David F. Hendry, 2010. "Nowcasting from disaggregates in the face of location shifts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 200-214.
  14. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-56, July.
  15. Hans-Martin Krolzig & David Hendry, 1999. "Computer Automation of General-to-Specific Model Selection Procedures," Computing in Economics and Finance 1999 314, Society for Computational Economics.
  16. Pesaran, M.H. & Smith, R., 2006. "Macroeconometric Modelling with a Global Perspective," Cambridge Working Papers in Economics 0604, Faculty of Economics, University of Cambridge.
  17. Jurgen A. Doornik, 2008. "Encompassing and Automatic Model Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 915-925, December.
  18. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 642-675, October.
  19. Hiebert, Paul & Vansteenkiste, Isabel, 2007. "International trade, technological shocks and spillovers in the labour market: A GVAR analysis of the US manufacturing sector," Working Paper Series 0731, European Central Bank.
  20. Castrén, Olli & Dées, Stéphane & Zaher, Fadi, 2010. "Stress-testing euro area corporate default probabilities using a global macroeconomic model," Journal of Financial Stability, Elsevier, vol. 6(2), pages 64-78, June.
  21. Pesaran, M.H. & Weiner, S.M., 2001. "Modelling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Cambridge Working Papers in Economics 0119, Faculty of Economics, University of Cambridge.
  22. Harbo, Ingrid, et al, 1998. "Asymptotic Inference on Cointegrating Rank in Partial Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 388-99, October.
  23. Mackinnon, J.G. & Haug, A.A. & Michelis, L., 1996. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," G.R.E.Q.A.M. 96a09, Universite Aix-Marseille III.
  24. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages C32-C61, 03.
  25. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
  26. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
  27. Juselius, Katarina, 1992. "Domestic and foreign effects on prices in an open economy: The case of Denmark," Journal of Policy Modeling, Elsevier, vol. 14(4), pages 401-428, August.
  28. Jennifer L. Castle & Nicholas W.P. Fawcett & David F. Hendry, 2009. "Nowcasting Is Not Just Contemporaneous Forecasting," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210(1), pages 71-89, October.
  29. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423.
  30. Johansen, Soren, 1992. "Cointegration in partial systems and the efficiency of single-equation analysis," Journal of Econometrics, Elsevier, vol. 52(3), pages 389-402, June.
  31. M. Hashem Pesaran & L. Vanessa Smith & Ron P. Smith, 2007. "What if the UK or Sweden had joined the euro in 1999? An empirical evaluation using a Global VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 55-87.
  32. Juselius, Katarina, 2006. "The Cointegrated VAR Model: Methodology and Applications," OUP Catalogue, Oxford University Press, number 9780199285679, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:iaecre:v:18:y:2012:i:3:p:247-258. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.