IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

mice: Multivariate Imputation by Chained Equations in R

  • Stef van Buuren
  • Karin Groothuis-Oudshoorn
Registered author(s):

    The R package mice imputes incomplete multivariate data by chained equations. The software mice 1.0 appeared in the year 2000 as an S-PLUS library, and in 2001 as an R package. mice 1.0 introduced predictor selection, passive imputation and automatic pooling. This article documents mice, which extends the functionality of mice 1.0 in several ways. In mice, the analysis of imputed data is made completely general, whereas the range of models under which pooling works is substantially extended. mice adds new functionality for imputing multilevel data, automatic predictor selection, data handling, post-processing imputed values, specialized pooling routines, model selection tools, and diagnostic graphs. Imputation of categorical data is improved in order to bypass problems caused by perfect prediction. Special attention is paid to transformations, sum scores, indices and interactions using passive imputation, and to the proper setup of the predictor matrix. mice can be downloaded from the Comprehensive R Archive Network. This article provides a hands-on, stepwise approach to solve applied incomplete data problems.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: link to download full text
    Download Restriction: no

    Article provided by American Statistical Association in its journal Journal of Statistical Software.

    Volume (Year): 45 ()
    Issue (Month): i03 ()

    in new window

    Handle: RePEc:jss:jstsof:45:i03
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Daniel Schunk, 2008. "A Markov chain Monte Carlo algorithm for multiple imputation in large surveys," AStA Advances in Statistical Analysis, Springer, vol. 92(1), pages 101-114, February.
    2. White, Ian R. & Daniel, Rhian & Royston, Patrick, 2010. "Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2267-2275, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:45:i03. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.