IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

The Estimation of Item Response Models with the lmer Function from the lme4 Package in R

  • Paul De Boeck
  • Marjan Bakker
  • Robert Zwitser
  • Michel Nivard
  • Abe Hofman
  • Francis Tuerlinckx
  • Ivailo Partchev
Registered author(s):

    In this paper we elaborate on the potential of the lmer function from the lme4 package in R for item response (IRT) modeling. In line with the package, an IRT framework is described based on generalized linear mixed modeling. The aspects of the framework refer to (a) the kind of covariates -- their mode (person, item, person-by-item), and their being external vs. internal to responses, and (b) the kind of effects the covariates have -- fixed vs. random, and if random, the mode across which the effects are random (persons, items). Based on this framework, three broad categories of models are described: Item covariate models, person covariate models, and person-by-item covariate models, and within each category three types of more specific models are discussed. The models in question are explained and the associated lmer code is given. Examples of models are the linear logistic test model with an error term, differential item functioning models, and local item dependency models. Because the lme4 package is for univariate generalized linear mixed models, neither the two-parameter, and three-parameter models, nor the item response models for polytomous response data, can be estimated with the lmer function.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.jstatsoft.org/v39/i12/paper
    File Function: link to download full text
    Download Restriction: no

    Article provided by American Statistical Association in its journal Journal of Statistical Software.

    Volume (Year): 39 ()
    Issue (Month): i12 ()
    Pages:

    as
    in new window

    Handle: RePEc:jss:jstsof:39:i12
    Contact details of provider: Web page: http://www.jstatsoft.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2004. "GLLAMM Manual," U.C. Berkeley Division of Biostatistics Working Paper Series 1160, Berkeley Electronic Press.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:39:i12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.