IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R

  • Friedrich Leisch
Registered author(s):

    FlexMix implements a general framework for fitting discrete mixtures of regression models in the R statistical computing environment: three variants of the EM algorithm can be used for parameter estimation, regressors and responses may be multivariate with arbitrary dimension, data may be grouped, e.g., to account for multiple observations per individual, the usual formula interface of the S language is used for convenient model specification, and a modular concept of driver functions allows to interface many different types of regression models. Existing drivers implement mixtures of standard linear models, generalized linear models and model-based clustering. FlexMix provides the E-step and all data handling, while the M-step can be supplied by the user to easily define new models.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.jstatsoft.org/v11/i08/paper
    File Function: link to download full text
    Download Restriction: no

    Article provided by American Statistical Association in its journal Journal of Statistical Software.

    Volume (Year): 11 ()
    Issue (Month): i08 ()
    Pages:

    as
    in new window

    Handle: RePEc:jss:jstsof:11:i08
    Contact details of provider: Web page: http://www.jstatsoft.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer, vol. 5(2), pages 249-282, September.
    2. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer, vol. 12(1), pages 21-55, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:11:i08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.