IDEAS home Printed from https://ideas.repec.org/a/jdm/journl/v7y2012i3p316-331.html
   My bibliography  Save this article

Description-based and experience-based decisions: individual analysis

Author

Listed:
  • Andrey Kudryavtsev
  • Julia Pavlodsky

Abstract

We analyze behavior in two basic classes of decision tasks: description-based and experience-based. In particular, we compare the prediction power of a number of decision learning models in both kinds of tasks. Unlike most previous studies, we focus on individual, rather than aggregate, behavioral characteristics. We carry out an experiment involving a battery of both description- and experience-based choices between two mixed binary prospects made by each of the participants, and employ a number of formal models for explaining and predicting participants' choices: Prospect theory (PT) (Kahneman & Tversky, 1979); Expectancy-Valence model (EVL) (Busemeyer & Stout, 2002); and three combinations of these well-established models. We document that the PT and the EVL models are best for predicting people's decisions in description- and experience-based tasks, respectively, which is not surprising as these two models are designed specially for these kinds of tasks. Furthermore, we find that models involving linear weighting of gains and losses perform better in both kinds of tasks, from the point of view of generalizability and individual parameter consistency. We therefore, conclude that, overall, when both prospects are mixed, the assumption of diminishing sensitivity does not improve models' prediction power for individual decision-makers. Finally, for some of the models' parameters, we document consistency at the individual level between description- and experience-based tasks.

Suggested Citation

  • Andrey Kudryavtsev & Julia Pavlodsky, 2012. "Description-based and experience-based decisions: individual analysis," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 7(3), pages 316-331, May.
  • Handle: RePEc:jdm:journl:v:7:y:2012:i:3:p:316-331
    as

    Download full text from publisher

    File URL: http://journal.sjdm.org/11/11925/jdm11925.pdf
    Download Restriction: no

    File URL: http://journal.sjdm.org/11/11925/jdm11925.html
    Download Restriction: no

    References listed on IDEAS

    as
    1. Richard H. Thaler & Amos Tversky & Daniel Kahneman & Alan Schwartz, 1997. "The Effect of Myopia and Loss Aversion on Risk Taking: An Experimental Test," The Quarterly Journal of Economics, Oxford University Press, vol. 112(2), pages 647-661.
    2. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, Oxford University Press, vol. 110(1), pages 73-92.
    3. Liat Hadar & Craig R. Fox, 2009. "Information asymmetry in decision from description versus decision from experience," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 4(4), pages 317-325, June.
    4. Yechiam, Eldad & Busemeyer, Jerome R., 2008. "Evaluating generalizability and parameter consistency in learning models," Games and Economic Behavior, Elsevier, vol. 63(1), pages 370-394, May.
    5. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jdm:journl:v:7:y:2012:i:3:p:316-331. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jonathan Baron). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.