IDEAS home Printed from
   My bibliography  Save this article

Image Theory's counting rule in clinical decision making: Does it describe how clinicians make patient-specific forecasts?


  • Paul R. Falzer
  • Melissa Garman


The field of clinical decision making is polarized by two predominate views. One holds that treatment recommendations should conform with guidelines; the other emphasizes clinical expertise in reaching case-specific judgments. Previous work developed a test for a proposed alternative, that clinical judgment should systematically incorporate both general knowledge and patient-specific information. The test was derived from image theory's two phase-account of decision making and its ``simple counting rule'', which describes how possible courses of action are pre-screened for compatibility with standards and values. The current paper applies this rule to clinical forecasting, where practitioners indicate how likely a specific patient will respond favorably to a recommended treatment. Psychiatric trainees evaluated eight case vignettes that exhibited from 0 to 3 incompatible attributes. They made two forecasts, one based on a guideline recommendation, the other based on their own alternative. Both forecasts were predicted by equally- and unequally-weighted counting rules. Unequal weighting provided a better fit and exhibited a clearer rejection threshold, or point at which forecasts are not diminished by additional incompatibilities. The hypothesis that missing information is treated as an incompatibility was not confirmed. There was evidence that the rejection threshold was influenced by clinician preference. Results suggests that guidelines may have a de-biasing influence on clinical judgment. Subject to limitations pertaining to the subject sample and population, clinical paradigm, guideline, and study procedure, the data support the use of a compatibility test to describe how clinicians make patient-specific forecasts.

Suggested Citation

  • Paul R. Falzer & Melissa Garman, 2012. "Image Theory's counting rule in clinical decision making: Does it describe how clinicians make patient-specific forecasts?," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 7(3), pages 268-281, May.
  • Handle: RePEc:jdm:journl:v:7:y:2012:i:3:p:268-281

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Alexander, Marcus & Christakis, Nicholas A., 2008. "Bias and asymmetric loss in expert forecasts: A study of physician prognostic behavior with respect to patient survival," Journal of Health Economics, Elsevier, vol. 27(4), pages 1095-1108, July.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jdm:journl:v:7:y:2012:i:3:p:268-281. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jonathan Baron). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.