IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Fast Acceptance by Common Experience - FACE-recognition in Schelling's model of neighborhood segregation

  • Nathan Berg
  • Ulrich Hoffrage
  • Katarzyna Abramczuk

Schelling (1969, 1971a,b, 1978) observed that macro-level patterns do not necessarily reflect micro-level intentions, desires or goals. In his classic model on neighborhood segregation which initiated a large and influential literature, individuals with no desire to be segregated from those who belong to other social groups nevertheless wind up clustering with their own type. Most extensions of Schelling's model have replicated this result. There is an important mismatch, however, between theory and observation, which has received relatively little attention. Whereas Schelling-inspired models typically predict large degrees of segregation starting from virtually any initial condition, the empirical literature documents considerable heterogeneity in measured levels of segregation. This paper introduces a mechanism that can produce significantly higher levels of integration and, therefore, brings predicted distributions of segregation more in line with real-world observation. As in the classic Schelling model, agents in a simulated world want to stay or move to a new location depending on the proportion of neighbors they judge to be acceptable. In contrast to the classic model, agents' classifications of their neighbors as acceptable or not depend lexicographically on recognition first and group type (e.g., ethnic stereotyping) second. The FACE-recognition model nests classic Schelling: When agents have no recognition memory, judgments about the acceptability of a prospective neighbor rely solely on his or her group type (as in the Schelling model). A very small amount of recognition memory, however, eventually leads to different classifications that, in turn, produce dramatic macro-level effects resulting in significantly higher levels of integration. A novel implication of the FACE-recognition model concerns the large potential impact of policy interventions that generate modest numbers of face-to-face encounters with members of other social groups.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://journal.sjdm.org/10/rh14/rh14.pdf
Download Restriction: no

File URL: http://journal.sjdm.org/10/rh14/rh14.html
Download Restriction: no

Article provided by Society for Judgment and Decision Making in its journal Judgment and Decision Making.

Volume (Year): 5 (2010)
Issue (Month): 5 (August)
Pages: 391-410

as
in new window

Handle: RePEc:jdm:journl:v:5:y:2010:i:5:p:391-410
Contact details of provider:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hanaki, Nobuyuki & Ishikawa, Ryuichiro & Akiyama, Eizo, 2009. "Learning games," Journal of Economic Dynamics and Control, Elsevier, vol. 33(10), pages 1739-1756, October.
  2. Patrick J. Bayer & Robert McMillan & Kim Rueben, 2004. "What Drives Racial Segregation? New Evidence Using Census Microdata," Yale School of Management Working Papers ysm409, Yale School of Management.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jdm:journl:v:5:y:2010:i:5:p:391-410. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jonathan Baron)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.