IDEAS home Printed from
   My bibliography  Save this article

Demand Allocation in Systems with Multiple Inventory Locations and Multiple Demand Sources


  • Saif Benjaafar

    () (Graduate Program in Industrial Engineering, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455)

  • Yanzhi Li

    () (Department of Management Sciences, City University of Hong Kong, Kowloon, Hong Kong)

  • Dongsheng Xu

    () (Department of Management Science, School of Business, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China)

  • Samir Elhedhli

    () (Department of Management Sciences, University of Waterloo, Waterloo, Ontario, Canada)


We consider the problem of allocating demand that originates from multiple sources among multiple inventory locations. Demand from each source arrives dynamically according to an independent Poisson process. The cost of fulfilling each order depends on both the source of the order and its fulfillment location. Inventory at all locations is replenished from a shared production facility with a finite production capacity and stochastic production times. Consequently, supply lead times are load dependent and affected by congestion at the production facility. Our objective is to determine an optimal demand allocation and optimal inventory levels at each location so that the sum of transportation, inventory, and backorder costs is minimized. We formulate the problem as a nonlinear optimization problem and characterize the structure of the optimal allocation policy. We show that the optimal demand allocations are always discrete, with demand from each source always fulfilled entirely from a single inventory location. We use this discreteness property to reformulate the problems as a mixed-integer linear program and provide an exact solution procedure. We show that this discreteness property extends to systems with other forms of supply processes. However, we also show that supply systems exist for which the property does not hold. Using numerical results, we examine the impact of different parameters and provide some managerial insights.

Suggested Citation

  • Saif Benjaafar & Yanzhi Li & Dongsheng Xu & Samir Elhedhli, 2008. "Demand Allocation in Systems with Multiple Inventory Locations and Multiple Demand Sources," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 43-60, October.
  • Handle: RePEc:inm:ormsom:v:10:y:2008:i:1:p:43-60

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Colin E. Bell & Shaler Stidham, Jr., 1983. "Individual versus Social Optimization in the Allocation of Customers to Alternative Servers," Management Science, INFORMS, vol. 29(7), pages 831-839, July.
    2. Paul H. Zipkin, 1995. "Performance Analysis of a Multi-Item Production-Inventory System Under Alternative Policies," Management Science, INFORMS, vol. 41(4), pages 690-703, April.
    3. Saif Benjaafar & William L. Cooper & Joon-Seok Kim, 2005. "On the Benefits of Pooling in Production-Inventory Systems," Management Science, INFORMS, vol. 51(4), pages 548-565, April.
    4. Saif Benjaafar & Mohsen ElHafsi & Francis de VĂ©ricourt, 2004. "Demand Allocation in Multiple-Product, Multiple-Facility, Make-to-Stock Systems," Management Science, INFORMS, vol. 50(10), pages 1431-1448, October.
    5. Gary D. Eppen, 1979. "Note--Effects of Centralization on Expected Costs in a Multi-Location Newsboy Problem," Management Science, INFORMS, vol. 25(5), pages 498-501, May.
    6. Jan A. Van Mieghem & Nils Rudi, 2002. "Newsvendor Networks: Inventory Management and Capacity Investment with Discretionary Activities," Manufacturing & Service Operations Management, INFORMS, vol. 4(4), pages 313-335, August.
    7. Tang, Christopher S. & van Vliet, Mario, 1994. "Traffic allocation for manufacturing systems," European Journal of Operational Research, Elsevier, vol. 75(1), pages 171-185, May.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:10:y:2008:i:1:p:43-60. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.