IDEAS home Printed from
   My bibliography  Save this article

Durbin-Watson Statistic For The Least Trimmed Squares


  • Jan Víšek


The famous Durbin-Watson statistic is studied for the residuals from the least trimmed squared regression analysis. Having proved asymptotic linearity of corresponding functional (namely sum of h smallest squared residuals), an asymptotic representation of the least trimmed squares estimator is established. It is then used to modify D-W considerations which led to the analytically tractable form of D-W statistic. It appeared that in the modified D-W statistic for the least trimmed squares the terms which are different from the terms appearing in D-W statistic for the ordinary least squares, contain only a finite number of summands. Since all these terms are uniformly with respect to the number of observations bounded in probability, it is clear that asymptotically both versions, the first one for the ordinary least squares and the second for the least trimmed squares, are equivalent. Nevertheless some rough analysis of behaviour for finite samples is included at the end of paper.

Suggested Citation

  • Jan Víšek, 2001. "Durbin-Watson Statistic For The Least Trimmed Squares," Bulletin of the Czech Econometric Society, The Czech Econometric Society, vol. 8(14).
  • Handle: RePEc:czx:journl:v:8:y:2001:i:14:id:100

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Diagnostics; regression; the least trimmed squares estimators; critical values of robustified D- W statistics;

    JEL classification:

    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:czx:journl:v:8:y:2001:i:14:id:100. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jozef Barunik). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.