IDEAS home Printed from
   My bibliography  Save this article

Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models


  • ROBERT Lund


This paper studies correlation and partial autocorrelation properties of periodic autoregressive moving-average (PARMA) time series models. An efficient algorithm to compute PARMA autocovariances is first derived. An innovations based algorithm to compute partial autocorrelations for a general periodic series is then developed. Finally, periodic moving averages and autoregressions are characterized as periodically stationary series whose autocovariances and partial autocorrelations, respectively, are zero at all lags that exceed some periodically varying threshold. Copyright 2004 Blackwell Publishing Ltd.

Suggested Citation

  • QIN SHAO & ROBERT Lund, 2004. "Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 359-372, May.
  • Handle: RePEc:bla:jtsera:v:25:y:2004:3:p:359-372

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    2. Shao, Q., 2006. "Mixture periodic autoregressive time series models," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 609-618, March.
    3. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    4. Shao, Q. & Ni, P.P., 2004. "Least-squares estimation and ANOVA for periodic autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 287-297, September.
    5. L. Tang & Q. Shao, 2014. "Efficient Estimation For Periodic Autoregressive Coefficients Via Residuals," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 378-389, July.
    6. Anderson, Paul L. & Kavalieris, Laimonis & Meerschaert, Mark M., 2008. "Innovations algorithm asymptotics for periodically stationary time series with heavy tails," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 94-116, January.
    7. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.
    8. Łukasz Lenart & Jacek Leśkow & Rafał Synowiecki, 2008. "Subsampling in testing autocovariance for periodically correlated time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 995-1018, November.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:25:y:2004:3:p:359-372. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.