IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

The Forecasting Performance of Seasonal and Nonlinear Models

  • Houda Ben Hadj Boubaker

    (The Higher Institute of Management of Tunisia, Tunisia)

Registered author(s):

    In this paper, we compare the forecasting performance of seasonal and non linear autoregressive models in terms of point, interval, and density forecasts for the growth rates of the Tunisian industrial production, for the period 1976:1- 2006:2. Our results suggest that the point forecasts generated by the linear models perform better than those provided by the nonlinear models at all horizons. By contrast, the analysis of interval and density forecasts at horizons of one and three quarters provide an evident support for the nonlinear models, this result is in line with the literature. Thus, our findings assess the usefulness of nonlinear models to investigate the dynamic behavior of economic systems and to produce accurate forecasts.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.aessweb.com/download.php?id=1018
    Download Restriction: no

    File URL: http://www.aessweb.com/archives.php?m=March&id=1018
    Download Restriction: no

    Article provided by Asian Economic and Social Society in its journal Asian Economic and Financial Review.

    Volume (Year): 1 (2011)
    Issue (Month): 1 (March)
    Pages: 26-39

    as
    in new window

    Handle: RePEc:asi:aeafrj:2011:p:26-39
    Contact details of provider: Postal: Sadeeq Block, Near Fawara Chowk, Abbasia Town, Rahim Yar Khan - 64200, Punjab, Pakistan
    Web page: http://www.aessweb.com/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
    2. Rapach, David E. & Wohar, Mark E., 2006. "The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior," International Journal of Forecasting, Elsevier, vol. 22(2), pages 341-361.
    3. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
    4. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    5. Lundbergh, Stefan & Terasvirta, Timo & van Dijk, Dick, 2003. "Time-Varying Smooth Transition Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 104-21, January.
    6. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    7. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    8. De Gooijer, Jan G. & Kumar, Kuldeep, 1992. "Some recent developments in non-linear time series modelling, testing, and forecasting," International Journal of Forecasting, Elsevier, vol. 8(2), pages 135-156, October.
    9. Siliverstovs, B. & van Dijk, D.J.C., 2003. "Forecasting industrial production with linear, nonlinear, and structural change models," Econometric Institute Research Papers EI 2003-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
    11. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
    12. Marcelo Cunha Medeiros & Álvaro Veiga & Carlos Eduardo Pedreira, 2000. "Modelling exchange rates: smooth transitions, neural networks, and linear models," Textos para discussão 432, Department of Economics PUC-Rio (Brazil).
    13. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-59, April.
    14. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages S119-36, Suppl. De.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:asi:aeafrj:2011:p:26-39. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Qazi Muhammad Imran)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.