IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

La protection de l'emploi des travailleurs Âgés en France : une étude de la contribution Delalande


The aim of this paper is to characterize the one-dimensional stochastic differential equations, for which the eigenfunctions of the infinitesimal generator are polynomials in y. Affine transformations of the Ornstein-Uhlenbeck process, the Cox-Ingersoll-Ross process and the Jacobi process belong to the solutions of this stochastic differential equation family. Such processes exhibit specific patterns of the drift and volatility functions and can be represented by means of a basis of polynomial transforms which can be used to approximate the likelihood function. We also discuss the constraints on parameters to ensure the nonnegativity of the volatility function and the stationarity of the process. The possibility to fully characterize the dynamic properties of these processes explain why they are benchmark models for unconstrained variables such as asset returns (Ornstein-Uhlenbeck), for nonnegative variables as volatilities or interest rates (Cox, Ingersoll, Ross), or for variables which can be interpreted as probabilities (Jacobi).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Article provided by ENSAE in its journal Annals of Economics and Statistics.

Volume (Year): (2007)
Issue (Month): 85 ()
Pages: 41-80

in new window

Handle: RePEc:adr:anecst:y:2007:i:85:p:02
Contact details of provider: Postal: 3, avenue Pierre Larousse, 92245 Malakoff Cedex
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:2007:i:85:p:02. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Robert Gary-Bobo)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.