IDEAS home Printed from https://ideas.repec.org/a/abq/ijist1/v7y2025i9p128-141.html
   My bibliography  Save this article

Eco-Friendly Nano Catalyst Preparation for Biodiesel Production from Melia azedarach Seeds: A Step Toward Climate Mitigation

Author

Listed:
  • Sajida Naeem Khan, Ayesha Riffat Paracha, Maryam Tanveer Akhtar, Maimoona Yasin Zai, Nayab Babar Ali

    (Department of Environmental Science, International Islamic University Islamabad, Islamabad, Pakistan)

Abstract

Biodiesel is a renewable and sustainable alternative to fossil fuels, offering a cleaner source of energy with significantly reduced greenhouse gas emissions. This study explores the production of biodiesel from non-edible Melia azedarach seed oil using green synthesis through TiO₂ nanocatalysts. Oil was extracted using n-hexane, and transesterification was performed under different conditions of the molar ratio of oil-to-methanol (1:3, 1:6, 1:9, 1:12, and 1:15), temperatures (70, 80, 90, 120, and 140 °C), concentration of TiO₂ catalyst (0.3, 0.5, 0.7, 0.9, and 1 g), and reaction times (1, 2, 3, 4, and 5 hours). Maximum biodiesel yield (93%) was achieved when the molar ratio was 1:12, the temperature was 80 °C, the weight of the TiO₂ catalyst was 0.7 g, and the reaction time was 3 hours. Fourier Transform Infrared Spectroscopy, X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) were used to characterize the TiO₂ nanocatalyst and verified its catalytic activity and structure. The FTIR characterization of the produced biodiesel verified the presence of methyl esters. The use of non-edible feedstock like Melia azedarach is eco-friendly since it is not in food-vs-fuel competition and can be grown on marginal lands. Secondly, the method combats global climate change by minimizing the use of fossil fuels and carbon emissions. Through this research, it is proven that biodiesel synthesis using non-edible feedstock (Melia azedarach seed oil) is a sustainable method of climate-resilient large-scale biodiesel production in accordance with renewable energy and climate resilience criteria

Suggested Citation

  • Sajida Naeem Khan, Ayesha Riffat Paracha, Maryam Tanveer Akhtar, Maimoona Yasin Zai, Nayab Babar Ali, 2025. "Eco-Friendly Nano Catalyst Preparation for Biodiesel Production from Melia azedarach Seeds: A Step Toward Climate Mitigation," International Journal of Innovations in Science & Technology, 50sea, vol. 7(9), pages 128-141, August.
  • Handle: RePEc:abq:ijist1:v:7:y:2025:i:9:p:128-141
    as

    Download full text from publisher

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/1486/2037
    Download Restriction: no

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/1486
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silitonga, A.S. & Shamsuddin, A.H. & Mahlia, T.M.I. & Milano, Jassinne & Kusumo, F. & Siswantoro, Joko & Dharma, S. & Sebayang, A.H. & Masjuki, H.H. & Ong, Hwai Chyuan, 2020. "Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization," Renewable Energy, Elsevier, vol. 146(C), pages 1278-1291.
    2. Yatish, K.V. & Lalithamba, H.S. & Suresh, R. & Latha, H.K.E., 2020. "Ochrocarpus longifolius assisted green synthesis of CaTiO3 nanoparticle for biodiesel production and its kinetic study," Renewable Energy, Elsevier, vol. 147(P1), pages 310-321.
    3. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fayaz Hussain & Manzoore Elahi M. Soudagar & Asif Afzal & M.A. Mujtaba & I.M. Rizwanul Fattah & Bharat Naik & Mohammed Huzaifa Mulla & Irfan Anjum Badruddin & T. M. Yunus Khan & Vallapudi Dhana Raju &, 2020. "Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends," Energies, MDPI, vol. 13(17), pages 1-20, September.
    2. Ezzati, Rohollah & Ranjbar, Shahram & Soltanabadi, Azim, 2021. "Kinetics models of transesterification reaction for biodiesel production: A theoretical analysis," Renewable Energy, Elsevier, vol. 168(C), pages 280-296.
    3. Teuku Meurah Indra Riayatsyah & Razali Thaib & Arridina Susan Silitonga & Jassinnee Milano & Abd. Halim Shamsuddin & Abdi Hanra Sebayang & Rahmawaty & Joko Sutrisno & Teuku Meurah Indra Mahlia, 2021. "Biodiesel Production from Reutealis trisperma Oil Using Conventional and Ultrasonication through Esterification and Transesterification," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    4. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    5. Kodgire, Pravin & Sharma, Anvita & Kachhwaha, Surendra Singh, 2023. "Optimization and kinetics of biodiesel production of Ricinus communis oil and used cottonseed cooking oil employing synchronised ‘ultrasound + microwave’ and heterogeneous CaO catalyst," Renewable Energy, Elsevier, vol. 212(C), pages 320-332.
    6. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    7. Hoora Mazaheri & Hwai Chyuan Ong & Zeynab Amini & Haji Hassan Masjuki & M. Mofijur & Chia Hung Su & Irfan Anjum Badruddin & T.M. Yunus Khan, 2021. "An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective," Energies, MDPI, vol. 14(13), pages 1-23, July.
    8. Nazia Hossain & Alyaa Nabihah Razali & Teuku Meurah Indra Mahlia & Tamal Chowdhury & Hemal Chowdhury & Hwai Chyuan Ong & Abd Halim Shamsuddin & Arridina Susan Silitonga, 2019. "Experimental Investigation, Techno-Economic Analysis and Environmental Impact of Bioethanol Production from Banana Stem," Energies, MDPI, vol. 12(20), pages 1-16, October.
    9. Artur Bieniek & Wojciech Jerzak & Małgorzata Sieradzka & Łukasz Mika & Karol Sztekler & Aneta Magdziarz, 2022. "Intermediate Pyrolysis of Brewer’s Spent Grain: Impact of Gas Atmosphere," Energies, MDPI, vol. 15(7), pages 1-17, March.
    10. Debora Mignogna & Márta Szabó & Paolo Ceci & Pasquale Avino, 2024. "Biomass Energy and Biofuels: Perspective, Potentials, and Challenges in the Energy Transition," Sustainability, MDPI, vol. 16(16), pages 1-33, August.
    11. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    12. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    13. Yatish, K.V. & Prakash, R. Mithun & Ningaraju, C. & Sakar, M. & GeethaBalakrishna, R. & Lalithamba, H.S., 2021. "Terminalia chebula as a novel green source for the synthesis of copper oxide nanoparticles and as feedstock for biodiesel production and its application on diesel engine," Energy, Elsevier, vol. 215(PB).
    14. Arun, S.B & Karthik, B.M & Yatish, K.V & Prashanth, K.N & Balakrishna, Geetha R., 2023. "Green synthesis of copper oxide nanoparticles using the Bombax ceiba plant: Biodiesel production and nano-additive to investigate diesel engine performance-emission characteristics," Energy, Elsevier, vol. 274(C).
    15. Maleki, Basir & Esmaeili, Hossein, 2023. "Ultrasound-assisted conversion of waste frying oil into biodiesel using Al-doped ZnO nanocatalyst: Box-Behnken design-based optimization," Renewable Energy, Elsevier, vol. 209(C), pages 10-26.
    16. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    18. Sandu, Mihai Rares & Boldor, Dorin & Macavei, Mircea Gabriel & Magdziarz, Aneta & Marculescu, Cosmin, 2025. "Heat and flow dynamics in biomass reactors under pyrolysis conditions: Computational insights," Renewable Energy, Elsevier, vol. 244(C).
    19. Hamed Pourzolfaghar & Faisal Abnisa & Wan Mohd Ashri Wan Daud & Mohamed Kheireddine Aroua & Teuku Meurah Indra Mahlia, 2020. "Catalyst Characteristics and Performance of Silica-Supported Zinc for Hydrodeoxygenation of Phenol," Energies, MDPI, vol. 13(11), pages 1-13, June.
    20. M. A. Mujtaba & H. H. Masjuki & M. A. Kalam & Fahad Noor & Muhammad Farooq & Hwai Chyuan Ong & M. Gul & Manzoore Elahi M. Soudagar & Shahid Bashir & I. M. Rizwanul Fattah & L. Razzaq, 2020. "Effect of Additivized Biodiesel Blends on Diesel Engine Performance, Emission, Tribological Characteristics, and Lubricant Tribology," Energies, MDPI, vol. 13(13), pages 1-16, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abq:ijist1:v:7:y:2025:i:9:p:128-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iqra Nazeer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.