IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1004.4272.html
   My bibliography  Save this paper

When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators

Author

Listed:
  • Ester Pantaleo
  • Michele Tumminello
  • Fabrizio Lillo
  • Rosario N. Mantegna

Abstract

The use of improved covariance matrix estimators as an alternative to the sample estimator is considered an important approach for enhancing portfolio optimization. Here we empirically compare the performance of 9 improved covariance estimation procedures by using daily returns of 90 highly capitalized US stocks for the period 1997-2007. We find that the usefulness of covariance matrix estimators strongly depends on the ratio between estimation period T and number of stocks N, on the presence or absence of short selling, and on the performance metric considered. When short selling is allowed, several estimation methods achieve a realized risk that is significantly smaller than the one obtained with the sample covariance method. This is particularly true when T/N is close to one. Moreover many estimators reduce the fraction of negative portfolio weights, while little improvement is achieved in the degree of diversification. On the contrary when short selling is not allowed and T>N, the considered methods are unable to outperform the sample covariance in terms of realized risk but can give much more diversified portfolios than the one obtained with the sample covariance. When T

Suggested Citation

  • Ester Pantaleo & Michele Tumminello & Fabrizio Lillo & Rosario N. Mantegna, 2010. "When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators," Papers 1004.4272, arXiv.org.
  • Handle: RePEc:arx:papers:1004.4272
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1004.4272
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoyuan Li & Maozai Tian, 2017. "A New Method For Dynamic Stock Clustering Based On Spectral Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 373-392, October.
    2. Fabrizio Pomponio & Frédéric Abergel, 2013. "Multiple-limit trades : empirical facts and application to lead-lag measures," Post-Print hal-00745317, HAL.
    3. Jiang, Xiong-Fei & Zheng, Bo & Ren, Fei & Qiu, Tian, 2017. "Localized motion in random matrix decomposition of complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 154-161.
    4. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    5. Shanshan Wang & Rudi Schäfer & Thomas Guhr, 2016. "Average cross-responses in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(9), pages 1-13, September.
    6. Christophe Chorro & Dominique Gu�gan & Florian Ielpo, 2012. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1079-1094, April.
    7. Jorge A. Restrepo & Jairo Angel Díaz & Juan Esteban Ocampo, 2014. "Operational Risk Analysis Of Industrial Small And Medium Enterprises," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 8(2), pages 65-80.
    8. Lubashevsky, Ihor & Friedrich, Rudolf & Heuer, Andreas & Ushakov, Andrey, 2009. "Generalized superstatistics of nonequilibrium Markovian systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4535-4550.
    9. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    10. B. Zhang & J. Wang & W. Zhang & G. C. Wang, 2020. "Nonlinear Scaling Behavior of Visible Volatility Duration for Financial Statistical Physics Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 373-389, August.
    11. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    12. Estrada, Fernando, 2011. "Theory of financial risk," MPRA Paper 29665, University Library of Munich, Germany.
    13. Yang, Jangho & Heinrich, Torsten & Winkler, Julian & Lafond, François & Koutroumpis, Pantelis & Farmer, J. Doyne, 2019. "Measuring productivity dispersion: a parametric approach using the Lévy alpha-stable distribution," MPRA Paper 96474, University Library of Munich, Germany.
    14. Kan Chen & Tuoyuan Cheng, 2022. "Measuring Tail Risks," Papers 2209.07092, arXiv.org, revised Nov 2022.
    15. Papp, Gábor & Caccioli, Fabio & Kondor, Imre, 2019. "Bias-variance trade-off in portfolio optimization under expected shortfall with ℓ 2 regularization," LSE Research Online Documents on Economics 100294, London School of Economics and Political Science, LSE Library.
    16. S. Reimann, 2007. "Price dynamics from a simple multiplicative random process model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 381-394, April.
    17. V. Alfi & M. Cristelli & L. Pietronero & A. Zaccaria, 2009. "Minimal agent based model for financial markets I," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(3), pages 385-397, February.
    18. Tseng, Jie-Jun & Li, Sai-Ping, 2012. "Quantifying volatility clustering in financial time series," International Review of Financial Analysis, Elsevier, vol. 23(C), pages 11-19.
    19. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
    20. Gilles Zumbach, 2010. "Volatility conditional on price trends," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 431-442.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.4272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.