IDEAS home Printed from https://ideas.repec.org/p/ags/aaea20/304401.html
   My bibliography  Save this paper

Subsidies vs. subsidies in the conservation of common property resources

Author

Listed:
  • Rouhi Rad, Mani
  • Suter, Jordan F.
  • Manning, Dale
  • Goemans, Christopher

Abstract

No abstract is available for this item.

Suggested Citation

  • Rouhi Rad, Mani & Suter, Jordan F. & Manning, Dale & Goemans, Christopher, 2020. "Subsidies vs. subsidies in the conservation of common property resources," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304401, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea20:304401
    DOI: 10.22004/ag.econ.304401
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/304401/files/18587.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.304401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Randall G. Monger & Jordan F. Suter & Dale T. Manning & Joel P. Schneekloth, 2018. "Retiring Land to Save Water: Participation in Colorado’s Republican River Conservation Reserve Enhancement Program," Land Economics, University of Wisconsin Press, vol. 94(1), pages 36-51.
    2. Andrew B. Rosenberg, 2020. "Targeting of Water Rights Retirement Programs: Evidence from Kansas," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1425-1447, October.
    3. Elbakidze, Levan & Vinson, Hannah & Cobourn, Kelly & Taylor, R.Garth, 2018. "Efficient groundwater allocation and binding hydrologic externalities," Resource and Energy Economics, Elsevier, vol. 53(C), pages 147-161.
    4. Tsvetan Tsvetanov & Dietrich Earnhart, 2020. "The Effectiveness of a Water Right Retirement Program at Conserving Water," Land Economics, University of Wisconsin Press, vol. 96(1), pages 56-74.
    5. Mani Rouhi Rad & Dale T. Manning & Jordan F. Suter & Christopher Goemans, 2021. "Policy Leakage or Policy Benefit? Spatial Spillovers from Conservation Policies in Common Property Resources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(5), pages 923-953.
    6. Jeffrey M. Peterson & Ya Ding, 2005. "Economic Adjustments to Groundwater Depletion in the High Plains: Do Water-Saving Irrigation Systems Save Water?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 147-159.
    7. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    8. Leah H Palm-Forster & Jordan F Suter & Kent D Messer, 2019. "Experimental Evidence on Policy Approaches That Link Agricultural Subsidies to Water Quality Outcomes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(1), pages 109-133.
    9. Manning, Dale T. & Rad, Mani Rouhi & Suter, Jordan F. & Goemans, Christopher & Xiang, Zaichen & Bailey, Ryan, 2020. "Non-market valuation in integrated assessment modeling: The benefits of water right retirement," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Aaron Hrozencik & Jordan F. Suter & Paul J. Ferraro & Nathan Hendricks, 2024. "Social comparisons and groundwater use: Evidence from Colorado and Kansas," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 946-966, March.
    2. Andrew B. Rosenberg, 2020. "Targeting of Water Rights Retirement Programs: Evidence from Kansas," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1425-1447, October.
    3. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    4. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    5. Shew, Aaron M. & Nalley, Lawton L. & Durand-Morat, Alvaro & Meredith, Kylie & Parajuli, Ranjan & Thoma, Greg & Henry, Christopher G., 2021. "Holistically valuing public investments in agricultural water conservation," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Manning, Dale T. & Rad, Mani Rouhi & Suter, Jordan F. & Goemans, Christopher & Xiang, Zaichen & Bailey, Ryan, 2020. "Non-market valuation in integrated assessment modeling: The benefits of water right retirement," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    7. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    8. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.
    9. R. Aaron Hrozencik & Dale T. Manning & Jordan F. Suter & Christopher Goemans, 2022. "Impacts of Block‐Rate Energy Pricing on Groundwater Demand in Irrigated Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 404-427, January.
    10. Lee, Juhee & Hendricks, Nathan, 2022. "Irrigation Decisions in Response to Groundwater Salinity in Kansas," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(3), September.
    11. Chatterjee, Diti & Dinar, Ariel & González-Rivera, Gloria, 2019. "Impact of Agricultural Extension on Irrigated Agriculture Production and Water Use in California," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2019.
    12. Boyer, Christopher N. & Larson, James A. & Roberts, Roland K. & McClure, Angela T. & Tyler, Donald D., 2014. "The impact of field size and energy cost on the profitability of supplemental corn irrigation," Agricultural Systems, Elsevier, vol. 127(C), pages 61-69.
    13. Fishman, Ram & Giné, Xavier & Jacoby, Hanan G., 2023. "Efficient irrigation and water conservation: Evidence from South India," Journal of Development Economics, Elsevier, vol. 162(C).
    14. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    15. Golden, Bill B. & Peterson, Jeffrey M., 2006. "Evaluation of Water Conservation From More Efficient Irrigation Systems," Staff Papers 117979, Kansas State University, Department of Agricultural Economics.
    16. Saak, Alexander E. & Peterson, Jeffrey M., 2007. "Groundwater use under incomplete information," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 214-228, September.
    17. Suarez, Federico & Fulginiti, Lilyan & Perrin, Richard, 2015. "The Value of Water in Agriculture: The U.S. High Plains Aquifer," 2015 Conference, August 9-14, 2015, Milan, Italy 211644, International Association of Agricultural Economists.
    18. Smith, Steven M., 2018. "Economic incentives and conservation: Crowding-in social norms in a groundwater commons," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 147-174.
    19. Godwin Kwabla Ekpe & Anna A. Klis, 2023. "Spillover Effects in Irrigated Agriculture from the Groundwater Commons," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 469-507, November.
    20. Saleh, Yahya & Gürler, Ülkü & Berk, Emre, 2011. "Centralized and decentralized management of groundwater with multiple users," European Journal of Operational Research, Elsevier, vol. 215(1), pages 244-256, November.

    More about this item

    Keywords

    Resource/Energy Economics and Policy; Agricultural and Food Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea20:304401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.