IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v55y2021i5d10.1007_s11135-020-01080-9.html
   My bibliography  Save this article

Using a choice experiment to explore the public willingness to pay for the impacts of improving energy efficiency of an apartment

Author

Listed:
  • Ju-Hee Kim

    (Seoul National University of Science and Technology)

  • Younggew Kim

    (Seoul National University of Science and Technology)

  • Seung-Hoon Yoo

    (Seoul National University of Science and Technology)

Abstract

It is quite important to improve energy efficiency of an apartment in South Korea since it is the most common residential space. The government needs information about the public willingness to pay (WTP) for the impacts of the improvement. This article explores the public WTP employing a choice experiment (CE). To this end, four attributes of reduction in greenhouse gas emissions, abatement in air pollutant emissions, betterment in residential convenience, and enhancement energy security were selected for the impacts. The price attribute was the additional price involved in improving energy efficiency of an apartment per 3.3m2. A total of 1000 interviewees were surveyed across the country through person-to-person interviews. A mixed logit model was applied in estimating a utility function from the gathered CE data to allow for preference heterogeneity. All the coefficient estimates for the utility function showed statistical significance. The marginal WTP estimates for a 1%p reduction in greenhouse gas emissions, a 1%p abatement in air pollutant emissions, betterment in residential convenience, and enhancement in energy security were KRW 31,740 (USD 28.2), 13,289 (USD 11.8), 64,799 (USD 57.6), and 119,723 (USD 106.4) per 3.3m2, respectively. These figures indicate the price premium for an apartment with improved energy efficiency.

Suggested Citation

  • Ju-Hee Kim & Younggew Kim & Seung-Hoon Yoo, 2021. "Using a choice experiment to explore the public willingness to pay for the impacts of improving energy efficiency of an apartment," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(5), pages 1775-1793, October.
  • Handle: RePEc:spr:qualqt:v:55:y:2021:i:5:d:10.1007_s11135-020-01080-9
    DOI: 10.1007/s11135-020-01080-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-020-01080-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-020-01080-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yamamoto, Yoshihiro, 2015. "Opinion leadership and willingness to pay for residential photovoltaic systems," Energy Policy, Elsevier, vol. 83(C), pages 185-192.
    2. Joseph Kim & Hyo-Jin Kim & Seung-Hoon Yoo, 2018. "Public Value of Marine Biodiesel Technology Development in South Korea," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    3. Farsi, Mehdi, 2010. "Risk aversion and willingness to pay for energy efficient systems in rental apartments," Energy Policy, Elsevier, vol. 38(6), pages 3078-3088, June.
    4. Jang, Jinyong & Lee, Jongsu & Yoo, Seung-Hoon, 2014. "The public׳s willingness to pay for securing a reliable natural gas supply in Korea," Energy Policy, Elsevier, vol. 69(C), pages 3-13.
    5. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    6. Zemo, Kahsay Haile & Kassahun, Habtamu Tilahun & Olsen, Søren Bøye, 2019. "Determinants of willingness-to-pay for attributes of power outage - An empirical discrete choice experiment addressing implications for fuel switching in developing countries," Energy, Elsevier, vol. 174(C), pages 206-215.
    7. Michel Kanmogne & Kent Eskridge, 2013. "Identifying some major determinants of entrepreneurial partnership, using a confounded factorial conjoint choice experiment," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 943-960, February.
    8. Huh, Sung-Yoon & Jo, Manseok & Shin, Jungwoo & Yoo, Seung-Hoon, 2019. "Impact of rebate program for energy-efficient household appliances on consumer purchasing decisions: The case of electric rice cookers in South Korea," Energy Policy, Elsevier, vol. 129(C), pages 1394-1403.
    9. Radpour, Saeidreza & Hossain Mondal, Md Alam & Kumar, Amit, 2017. "Market penetration modeling of high energy efficiency appliances in the residential sector," Energy, Elsevier, vol. 134(C), pages 951-961.
    10. John Mackenzie, 1993. "A Comparison of Contingent Preference Models," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(3), pages 593-603.
    11. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    12. Kwak, Seung-Jun & Yoo, Seung-Hoon & Kim, Tai-Yoo, 2001. "A constructive approach to air-quality valuation in Korea," Ecological Economics, Elsevier, vol. 38(3), pages 327-344, September.
    13. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    14. Xin Nie & Qian Chen & Ting Xiao & Han Wang, 2019. "Willingness to pay for ecological function regions protection based on a choice experiment method: a case study of the Shiwandashan nature reserve," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(2), pages 813-829, March.
    15. Lee, Joo-Suk & Yoo, Seung-Hoon, 2009. "Measuring the environmental costs of tidal power plant construction: A choice experiment study," Energy Policy, Elsevier, vol. 37(12), pages 5069-5074, December.
    16. Hee-Jong Yang & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "The Environmental Costs of Photovoltaic Power Plants in South Korea: A Choice Experiment Study," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    17. Ju-Hee Kim & Hyo-Jin Kim & Seung-Hoon Yoo, 2020. "External benefits of increasing bioethanol consumption: a choice experiment study," Applied Economics Letters, Taylor & Francis Journals, vol. 27(6), pages 447-450, March.
    18. Gebremedhin, Alemayehu, 2012. "Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions," Applied Energy, Elsevier, vol. 95(C), pages 300-304.
    19. Lim, Seul-Ye & Lim, Kyoung-Min & Yoo, Seung-Hoon, 2014. "External benefits of waste-to-energy in Korea: A choice experiment study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 588-595.
    20. Jones, Benjamin A. & Ripberger, Joseph & Jenkins-Smith, Hank & Silva, Carol, 2017. "Estimating willingness to pay for greenhouse gas emission reductions provided by hydropower using the contingent valuation method," Energy Policy, Elsevier, vol. 111(C), pages 362-370.
    21. Achtnicht, Martin, 2011. "Do environmental benefits matter? Evidence from a choice experiment among house owners in Germany," Ecological Economics, Elsevier, vol. 70(11), pages 2191-2200, September.
    22. Ruokamo, Enni, 2016. "Household preferences of hybrid home heating systems – A choice experiment application," Energy Policy, Elsevier, vol. 95(C), pages 224-237.
    23. Poortinga, Wouter & Steg, Linda & Vlek, Charles & Wiersma, Gerwin, 2003. "Household preferences for energy-saving measures: A conjoint analysis," Journal of Economic Psychology, Elsevier, vol. 24(1), pages 49-64, February.
    24. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    25. Hensher,David A. & Rose,John M. & Greene,William H., 2015. "Applied Choice Analysis," Cambridge Books, Cambridge University Press, number 9781107465923, November.
    26. Kwak, So-Yoon & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2010. "Valuing energy-saving measures in residential buildings: A choice experiment study," Energy Policy, Elsevier, vol. 38(1), pages 673-677, January.
    27. Ziemele, Jelena & Pakere, Ieva & Blumberga, Dagnija, 2016. "The future competitiveness of the non-Emissions Trading Scheme district heating systems in the Baltic States," Applied Energy, Elsevier, vol. 162(C), pages 1579-1585.
    28. Hyo-Jin Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
    29. Lim, Seul-Ye & Min, Seo-Hyeon & Yoo, Seung-Hoon, 2016. "The public value of contaminated soil remediation in Janghang copper smelter of Korea," Resources Policy, Elsevier, vol. 50(C), pages 66-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Ju-Hee & Yoo, Seung-Hoon, 2020. "Public perspective on the environmental impacts of sea sand mining: Evidence from a choice experiment in South Korea," Resources Policy, Elsevier, vol. 69(C).
    2. Christian A. Oberst & Reinhard Madlener, 2015. "Prosumer Preferences Regarding the Adoption of Micro†Generation Technologies: Empirical Evidence for German Homeowners," Working Papers 2015.07, International Network for Economic Research - INFER.
    3. Galassi, Veronica & Madlener, Reinhard, 2017. "The Role of Environmental Concern and Comfort Expectations in Energy Retrofit Decisions," Ecological Economics, Elsevier, vol. 141(C), pages 53-65.
    4. Stefania Troiano & Daniel Vecchiato & Francesco Marangon & Tiziano Tempesta & Federico Nassivera, 2019. "Households’ Preferences for a New ‘Climate-Friendly’ Heating System: Does Contribution to Reducing Greenhouse Gases Matter?," Energies, MDPI, vol. 12(13), pages 1-19, July.
    5. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    6. Kota Mameno & Takahiro Kubo & Hiroyuki Oguma & Yukihiro Amagai & Yasushi Shoji, 2022. "Decline in the alpine landscape aesthetic value in a national park under climate change," Climatic Change, Springer, vol. 170(3), pages 1-18, February.
    7. Galassi, Veronica & Madlener, Reinhard, 2016. "Some Like it Hot: The Role of Environmental Concern and Comfort Expectations in Energy Retrofit Decisions," FCN Working Papers 11/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    8. Lang, Ghislaine & Farsi, Mehdi & Lanz, Bruno & Weber, Sylvain, 2021. "Energy efficiency and heating technology investments: Manipulating financial information in a discrete choice experiment," Resource and Energy Economics, Elsevier, vol. 64(C).
    9. Ruokamo, Enni & Kopsakangas-Savolainen, Maria & Meriläinen, Teemu & Svento, Rauli, 2019. "Towards flexible energy demand – Preferences for dynamic contracts, services and emissions reductions," Energy Economics, Elsevier, vol. 84(C).
    10. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    11. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    12. Ruokamo, Enni, 2016. "Household preferences of hybrid home heating systems – A choice experiment application," Energy Policy, Elsevier, vol. 95(C), pages 224-237.
    13. Daziano, Ricardo A. & Achtnicht, Martin, 2014. "Accounting for uncertainty in willingness to pay for environmental benefits," Energy Economics, Elsevier, vol. 44(C), pages 166-177.
    14. Elena Stolyarova & Hélène Le Cadre, MINES ParisTech, PSL Research University, Centre for Applied Mathematics & Dominique Osso, EDF R&D, ENERgie dans les BAtiments et les Territoires & Benoit Allibe, 2015. "Stated Preferences for Space Heating Investment," EcoMod2015 8579, EcoMod.
    15. Schleich, Joachim & Tu, Gengyang & Faure, Corinne & Guetlein, Marie-Charlotte, 2021. "Would you prefer to rent rather than own your new heating system? Insights from a discrete choice experiment among owner-occupiers in the UK," Energy Policy, Elsevier, vol. 158(C).
    16. Kim, Hyo-Jin & Kim, Ju-Hee & Yoo, Seung-Hoon, 2019. "Social acceptance of offshore wind energy development in South Korea: Results from a choice experiment survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    17. Achtnicht, Martin & Madlener, Reinhard, 2014. "Factors influencing German house owners' preferences on energy retrofits," Energy Policy, Elsevier, vol. 68(C), pages 254-263.
    18. Anderson, Christopher M. & Das, Chhandita & Tyrrell, Timothy J., 2006. "Parking preferences among tourists in Newport, Rhode Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 334-353, May.
    19. Campbell, Danny, 2007. "Combining mixed logit models and random effects models to identify the determinants of willingness to pay for rural landscape improvements," 81st Annual Conference, April 2-4, 2007, Reading University, UK 7975, Agricultural Economics Society.
    20. Ajayi, V. & Reiner, D., 2020. "Consumer Willingness to Pay for Reducing the Environmental Footprint of Green Plastics," Cambridge Working Papers in Economics 20110, Faculty of Economics, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:55:y:2021:i:5:d:10.1007_s11135-020-01080-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.