IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i7d10.1007_s11069-024-06493-5.html
   My bibliography  Save this article

Establishing a rainfall dual-threshold for flash flood early warning considering rainfall patterns in mountainous catchment, China

Author

Listed:
  • Po Yang

    (Sichuan University)

  • Zexing Xu

    (Sichuan University)

  • Xufeng Yan

    (Sichuan University)

  • Xiekang Wang

    (Sichuan University)

Abstract

Flash flood early warning is a very effective way to reduce casualties induced by rainstorm flash flood in mountainous area. The forecasting of flash flooding remains challenging because of the short response time and inaccurate warning threshold. So far, the flash flood disaster defenses often adopt the critical rainfall amounts inducing the peak discharge or water level to establish an early warning threshold in China. However, the runoff peak discharge depends on rainfall patterns including rainfall intensity and accumulation, result in the critical rainfall threshold has a significant uncertainty. To reduce this uncertainty, herein we present a dual-threshold method for flash flood early warning with consideration of rainfall patterns based on above two-rainfall metrics. Moreover, applying this new method in the flash flood disasters occurred in the Zhongdu river basin, Sichuan province of China to evaluate the early warning reliability. Firstly, five most likely rainfall patterns of this basin were determined according to the timing of rain peak in historical rainfall events, and then, we determined the critical rainfall thresholds under different rainfall patterns and soil moisture conditions. The result showed that the rainfall thresholds uncertainty caused by rainfall pattern is more pronounced than soil moisture. Next, using the cumulative rainfall depth and maximum rainfall intensity corresponding to disaster discharge in different flood processes to establish the dual-thresholds. We found the dual-threshold method comprehensively considers the impacts of soil moisture, rainfall temporal distribution and flood rising property, which can achieve early warning for the four protected objects along the Zhongdu River, with an average lead duration of 46.2 min. Compared with the other three single-threshold methods, the critical rainfall and the critical rainstorm curve methods frequently created false or missing warnings, making it difficult to achieve the effect of early warning. Although reliability of flood water level rising rate method is high, the lead time is relatively short and only lasts for a few minutes in some cases. As a result, the new proposed dual-threshold method, accounting for both the reliability and long lead time, can be a potential candidate for the flash flood disaster early warning.

Suggested Citation

  • Po Yang & Zexing Xu & Xufeng Yan & Xiekang Wang, 2024. "Establishing a rainfall dual-threshold for flash flood early warning considering rainfall patterns in mountainous catchment, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6657-6684, May.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06493-5
    DOI: 10.1007/s11069-024-06493-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06493-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06493-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06493-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.