IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2367-d156800.html
   My bibliography  Save this article

The Water Implications of Greenhouse Gas Mitigation: Effects on Land Use, Land Use Change, and Forestry

Author

Listed:
  • Chin-Hsien Yu

    (Institute of Development, Southwestern University of Finance and Economics, Chengdu 611130, China)

  • Bruce A. McCarl

    (Department of Agricultural Economics, Texas A&M University, College Station, TX 77840, USA)

Abstract

This study addresses the water quantity and quality implications of greenhouse gas mitigation efforts in agriculture and forestry. This is done both through a literature review and a case study. The case study is set in the Missouri River Basin (MRB) and involves integration of a water hydrology model and a land use model with an econometric model estimated to make the link. The hydrology model (Soil and Water Assessment Tool, SWAT) is used to generate a multiyear, multilocation dataset that gives estimated water quantity and quality measures dependent on land use. In turn, those data are used in estimating a quantile regression model linking water quantity and quality with climate and land use. Additionally, a land use model (Forest and Agricultural Sector Optimization Model with Greenhouse Gases, FASOMGHG) is used to simulate the extent of mitigation strategy adoption and land use implications under alternative carbon prices. Then, the land use results and climate change forecasts are input to the econometric model and water quantity/quality projections developed. The econometric results show that land use patterns have significant influences on water quantity. Specifically, an increase in grassland significantly decreases water quantity, with forestry having mixed effects. At relatively high quantiles, land use changes from cropped land to grassland reduce water yield, while switching from cropping or grassland to forest yields more water. It also shows that an increase in cropped land use significantly degrades water quality at the 50% quantile and moving from cropped land to either forest or pasture slightly improves water quality at the 50% quantile but significantly worsens water quality at the 90% quantile. In turn, a simulation exercise shows that water quantity slightly increases under mitigation activity stimulated by lower carbon prices but significantly decreases under higher carbon prices. For water quality, when carbon prices are low, water quality is degraded under most mitigation alternatives but quality improves under higher carbon prices.

Suggested Citation

  • Chin-Hsien Yu & Bruce A. McCarl, 2018. "The Water Implications of Greenhouse Gas Mitigation: Effects on Land Use, Land Use Change, and Forestry," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2367-:d:156800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Justin S. Baker & Brian C. Murray & Bruce A. McCarl & Siyi Feng & Robert Johansson, 2013. "Implications of Alternative Agricultural Productivity Growth Assumptions on Land Management, Greenhouse Gas Emissions, and Mitigation Potential," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 435-441.
    2. Stefan Bache & Christian Dahl & Johannes Kristensen, 2013. "Headlights on tobacco road to low birthweight outcomes," Empirical Economics, Springer, vol. 44(3), pages 1593-1633, June.
    3. Giacomo Grassi & Michel Elzen & Andries Hof & Roberto Pilli & Sandro Federici, 2012. "The role of the land use, land use change and forestry sector in achieving Annex I reduction pledges," Climatic Change, Springer, vol. 115(3), pages 873-881, December.
    4. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    5. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    6. McCarl, Bruce A., 2008. "Bioenergy in a Greenhouse Mitigating World," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-3.
    7. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    8. Rabotyagov, Sergey S. & Campbell, Todd & Jha, Manoj & Gassman, Philip W. & Arnold, Jeffrey G. & Kurkalova, Lyubov A. & Secchi, Silvia & Feng, Hongli & Kling, Catherine L., 2010. "Least Cost Control of Agricultural Nutrient Contributions to the Gulf of Mexico Hypoxic Zone," Staff General Research Papers Archive 31319, Iowa State University, Department of Economics.
    9. Bruce A. McCarl & Thomas H. Spreen, 1980. "Price Endogenous Mathematical Programming As a Tool for Sector Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(1), pages 87-102.
    10. Townsend, P.V. & Harper, R.J. & Brennan, P.D. & Dean, C. & Wu, S. & Smettem, K.R.J. & Cook, S.E., 2012. "Multiple environmental services as an opportunity for watershed restoration," Forest Policy and Economics, Elsevier, vol. 17(C), pages 45-58.
    11. Elbakidze, Levan & McCarl, Bruce A., 2007. "Sequestration offsets versus direct emission reductions: Consideration of environmental co-effects," Ecological Economics, Elsevier, vol. 60(3), pages 564-571, January.
    12. Alig, Ralph J. & Adams, Darius M. & McCarl, Bruce A., 1998. "Impacts of Incorporating Land Exchanges Between Forestry and Agriculture in Sector Models," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 30(2), pages 389-401, December.
    13. Heng‐Chi Lee & Bruce A. McCarl & Dhazn Gillig, 2005. "The Dynamic Competitiveness of U.S. Agricultural and Forest Carbon Sequestration," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(4), pages 343-357, December.
    14. Bruce A. McCarl & Uwe A. Schneider, 2000. "U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 22(1), pages 134-159.
    15. Rose, Steven K. & Ahammad, Helal & Eickhout, Bas & Fisher, Brian & Kurosawa, Atsushi & Rao, Shilpa & Riahi, Keywan & van Vuuren, Detlef P., 2012. "Land-based mitigation in climate stabilization," Energy Economics, Elsevier, vol. 34(1), pages 365-380.
    16. Golub, Alla & Hertel, Thomas & Lee, Huey-Lin & Rose, Steven & Sohngen, Brent, 2009. "The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry," Resource and Energy Economics, Elsevier, vol. 31(4), pages 299-319, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    2. David Walker, 2014. "The Economic Potential for Forest-Based Carbon Sequestration under Different Emissions Targets and Accounting Schemes," Working Papers 2014.02, School of Economics, La Trobe University.
    3. Bosello, Francesco & Orecchia, Carlo & Parrado, Ramiro, 2013. "The additional contribution of non-CO2 mitigation in climate policy costs and efforts in Europe," Conference papers 332363, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Khellaf, Ayache & Nihou, Abdelaziz & Baray, Abdoul G. & van der Mensbrugghe, Dominique & Liverani, Andrea & Tyner, Wallace E., 2014. "Socioeconomic impacts of green energy growth policy in Morocco - a general equilibrium analysis," Conference papers 332493, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    6. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    7. Anesu Gelfand Kuhudzai & Guido Van Hal & Stefan Van Dongen & Muhammad Ehsanul Hoque, 2022. "Modelling of South African Hypertension: Application of Panel Quantile Regression," IJERPH, MDPI, vol. 19(10), pages 1-10, May.
    8. Yong Jiang & Won Koo, 2014. "The Short-Term Impact of a Domestic Cap-and-Trade Climate Policy on Local Agriculture: A Policy Simulation with Producer Behavior," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(4), pages 511-537, August.
    9. Uwe A. Schneider & Michael Obersteiner & Erwin Schmid & Bruce A. McCarl, 2007. "Agricultural adaptation to climate policies under technical change," Working Papers FNU-133, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2008.
    10. Orecchia, Carlo & Parrado, Ramiro, 2013. "A Quantitative Assessment of the Implications of Including non-CO2 Emissions in the European ETS," Climate Change and Sustainable Development 162416, Fondazione Eni Enrico Mattei (FEEM).
    11. Dariusz Wójcik & Eric Knight & Vladimír Pažitka, 2018. "What turns cities into international financial centres? Analysis of cross-border investment banking 2000–2014," Journal of Economic Geography, Oxford University Press, vol. 18(1), pages 1-33.
    12. Schneider, Uwe A. & McCarl, Bruce A., 2005. "Implications of a Carbon-Based Energy Tax for U.S. Agriculture," Agricultural and Resource Economics Review, Cambridge University Press, vol. 34(2), pages 265-279, October.
    13. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    14. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 60(1), pages 227-259, January.
    15. Uwe A. Schneider & Bruce A. McCarl, 2003. "Measuring Abatement Potentials When Multiple Change Is Present: The Case Of Greenhouse Gas Mitigation In U.S. Agriculture And Forestry," Working Papers FNU-23, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2002.
    16. Xavier Vollenweider, 2014. "A simple framework for the estimation of climate exposure," GRI Working Papers 158, Grantham Research Institute on Climate Change and the Environment.
    17. Philip Kostov & Julie Le Gallo, 2015. "Convergence: A Story of Quantiles and Spillovers," Kyklos, Wiley Blackwell, vol. 68(4), pages 552-576, November.
    18. Moon, Jin-Young & Apland, Jeffrey & Folle, Solomon & Mulla, David J., 2012. "Environmental Impacts of Cellulosic Feedstock Production: A Case Study of a Cornbelt Aquifer," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125016, Agricultural and Applied Economics Association.
    19. Kung, Chih-Chun & Zhang, Liguo & Kong, Fanbin, 2016. "How government subsidy leads to sustainable bioenergy development," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 275-284.
    20. Chih-Chun Kung & Tao Wu, 2020. "A spatial equilibrium analysis of using agricultural resources to produce biofuel," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(2), pages 74-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2367-:d:156800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.