IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v204y2024ics0167715223001542.html
   My bibliography  Save this article

Quantifying the uncertainty of partitions for infinite mixture models

Author

Listed:
  • Lavigne, Aurore
  • Liverani, Silvia

Abstract

Bayesian clustering models, such as Dirichlet process mixture models (DPMMs), are sophisticated flexible models. They induce a posterior distribution on the set of all partitions of a set of observations. Analysing this posterior distribution is of great interest, but it comes with several challenges. First of all, the number of partitions is overwhelmingly large even for moderate values of the number of observations. Consequently the sample space of the posterior distribution of the partitions is not explored well by MCMC samplers. Second, due to the complexity of representing the uncertainty of partitions, usually only maximum a posteriori estimates of the posterior distribution of partitions are provided and discussed in the literature. In this paper we propose a numerical and graphical method for quantifying the uncertainty of the clusters of a given partition of the data and we suggest how this tool can be used to learn about the partition uncertainty.

Suggested Citation

  • Lavigne, Aurore & Liverani, Silvia, 2024. "Quantifying the uncertainty of partitions for infinite mixture models," Statistics & Probability Letters, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:stapro:v:204:y:2024:i:c:s0167715223001542
    DOI: 10.1016/j.spl.2023.109930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715223001542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2023.109930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liverani, Silvia & Hastie, David I. & Azizi, Lamiae & Papathomas, Michail & Richardson, Sylvia, 2015. "PReMiuM: An R Package for Profile Regression Mixture Models Using Dirichlet Processes," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i07).
    2. Silvia Liverani & Lucy Leigh & Irene L. Hudson & Julie E. Byles, 2021. "Clustering method for censored and collinear survival data," Computational Statistics, Springer, vol. 36(1), pages 35-60, March.
    3. Christian Hennig, 2010. "Methods for merging Gaussian mixture components," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(1), pages 3-34, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scrucca, Luca, 2016. "Identifying connected components in Gaussian finite mixture models for clustering," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 5-17.
    2. Pietro Coretto & Christian Hennig, 2016. "Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1648-1659, October.
    3. Annalina Sarra & Lara Fontanella & Simone Zio, 2019. "Identifying Students at Risk of Academic Failure Within the Educational Data Mining Framework," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 41-60, November.
    4. Melnykov, Volodymyr, 2016. "Model-based biclustering of clickstream data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 31-45.
    5. Sarrias, Mauricio, 2016. "Discrete Choice Models with Random Parameters in R: The Rchoice Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i10).
    6. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    7. Kim, Daeyoung & Seo, Byungtae, 2014. "Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 100-120.
    8. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    9. Matthew Heiner & Matthew J. Heaton & Benjamin Abbott & Philip White & Camille Minaudo & Rémi Dupas, 2023. "Model-Based Clustering of Trends and Cycles of Nitrate Concentrations in Rivers Across France," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 74-98, March.
    10. Chauveau, Didier & Hoang, Vy Thuy Lynh, 2016. "Nonparametric mixture models with conditionally independent multivariate component densities," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 1-16.
    11. Warren C Jochem & Douglas R Leasure & Oliver Pannell & Heather R Chamberlain & Patricia Jones & Andrew J Tatem, 2021. "Classifying settlement types from multi-scale spatial patterns of building footprints," Environment and Planning B, , vol. 48(5), pages 1161-1179, June.
    12. Lauren Hoskovec & Wande Benka-Coker & Rachel Severson & Sheryl Magzamen & Ander Wilson, 2021. "Model choice for estimating the association between exposure to chemical mixtures and health outcomes: A simulation study," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-21, March.
    13. Lim, Hyunwoo & Yoo, Eun-Hye & Park, Minyoung, 2018. "Warehouse rental market segmentation using spatial profile regression," Journal of Transport Geography, Elsevier, vol. 73(C), pages 64-74.
    14. Christophe Biernacki & Matthieu Marbac & Vincent Vandewalle, 2021. "Gaussian-Based Visualization of Gaussian and Non-Gaussian-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 129-157, April.
    15. Bettina Grün & Paul Hofmarcher, 2021. "Identifying groups of determinants in Bayesian model averaging using Dirichlet process clustering," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1018-1045, September.
    16. Coffey, N. & Hinde, J. & Holian, E., 2014. "Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 14-29.
    17. Álvarez, Adolfo & Peña, Daniel, 2013. "Recombining partitions via unimodality tests," DES - Working Papers. Statistics and Econometrics. WS ws130706, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    19. Semhar Michael & Volodymyr Melnykov, 2016. "An effective strategy for initializing the EM algorithm in finite mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 563-583, December.
    20. Daniel W Kennedy & Jessica Cameron & Paul P -Y Wu & Kerrie Mengersen, 2021. "Peer groups for organisational learning: Clustering with practical constraints," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:204:y:2024:i:c:s0167715223001542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.