IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v195y2020ics0951832019304077.html
   My bibliography  Save this article

A game-theoretic approach to modeling attacks and defenses of smart grids at three levels

Author

Listed:
  • Shan, Xiaojun Gene
  • Zhuang, Jun

Abstract

As optimization, user capabilities, and data-taking abilities are incorporated into next-generation power grids, or smart grids, they face cyber threats. The traditional electrical grid could only be damaged by physical attacks; however, the smart grid can suffer remote/cyber attacks, which have not been studied extensively in the literature. The electrical grid forms the backbone of the modern society and its security has significant implications in military settings. This paper applies game theory to model three-levels (power plants, transmission, and distribution networks) of defenses and attacks in smart grid network security. We characterize both the attacker and the defender (who interact at three network levels: distribution, transmission, and power plants) best responses and equilibrium strategies. We find that the defender’s best response is not only a function of direct attacks but also of the spread from connected networks. Sensitivity analyses of the equilibrium strategies show that when success probability of an attack against power plants reaches a threshold, the defender increases defending efforts for power plants. In contrast, the attack effort at all levels is not affected by this probability. This paper provides some novel insights to modeling and analyzing the emerging threats to the growing smart grid networks.

Suggested Citation

  • Shan, Xiaojun Gene & Zhuang, Jun, 2020. "A game-theoretic approach to modeling attacks and defenses of smart grids at three levels," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019304077
    DOI: 10.1016/j.ress.2019.106683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019304077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Zhuang & Vicki Bier, 2011. "Secrecy And Deception At Equilibrium, With Applications To Anti-Terrorism Resource Allocation," Defence and Peace Economics, Taylor & Francis Journals, vol. 22(1), pages 43-61.
    2. Bier, Vicki M. & Gratz, Eli R. & Haphuriwat, Naraphorn J. & Magua, Wairimu & Wierzbicki, Kevin R., 2007. "Methodology for identifying near-optimal interdiction strategies for a power transmission system," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1155-1161.
    3. Levitin, Gregory & Hausken, Kjell & Dai, Yuanshun, 2014. "Optimal defense with variable number of overarching and individual protections," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 81-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Oster, Matthew R. & King, Ethan & Bakker, Craig & Bhattacharya, Arnab & Chatterjee, Samrat & Pan, Feng, 2023. "Multi-level optimization with the koopman operator for data-driven, domain-aware, and dynamic system security," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Ding, Zhetong & Chen, Chunyu & Cui, Mingjian & Bi, Wenjun & Chen, Yang & Li, Fangxing, 2021. "Dynamic game-based defensive primary frequency control system considering intelligent attackers," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Fu, Xiuwen & Li, Qing & Li, Wenfeng, 2023. "Modeling and analysis of industrial IoT reliability to cascade failures: An information-service coupling perspective," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    6. Berghout, Tarek & Benbouzid, Mohamed & Muyeen, S.M., 2022. "Machine learning for cybersecurity in smart grids: A comprehensive review-based study on methods, solutions, and prospects," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    7. Wu, Yipeng & Chen, Zhilong & Dang, Junhu & Chen, Yicun & Zhao, Xudong & Zha, Lvying, 2022. "Allocation of defensive and restorative resources in electric power system against consecutive multi-target attacks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Zhang, Jing & Wang, Yan & Zhuang, Jun, 2021. "Modeling multi-target defender-attacker games with quantal response attack strategies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. Zhang, Xiaoxiong & Ding, Song & Ge, Bingfeng & Xia, Boyuan & Pedrycz, Witold, 2021. "Resource allocation among multiple targets for a defender-attacker game with false targets consideration," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    10. Lin, Chen & Xiao, Hui & Peng, Rui & Xiang, Yisha, 2021. "Optimal defense-attack strategies between M defenders and N attackers: A method based on cumulative prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    2. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.
    3. Ouyang, Min & Xu, Min & Zhang, Chi & Huang, Shitong, 2017. "Mitigating electric power system vulnerability to worst-case spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 144-154.
    4. Bier, Vicki M. & Hausken, Kjell, 2013. "Defending and attacking a network of two arcs subject to traffic congestion," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 214-224.
    5. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    6. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    7. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    8. Konrad, Kai A. & Morath, Florian, 2023. "How to preempt attacks in multi-front conflict with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 493-500.
    9. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    10. Konrad, Kai A., 2024. "The collective security dilemma of preemptive strikes," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1191-1199.
    11. Li, Y.F. & Sansavini, G. & Zio, E., 2013. "Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 195-205.
    12. Kathryn Merrick & Medria Hardhienata & Kamran Shafi & Jiankun Hu, 2016. "A Survey of Game Theoretic Approaches to Modelling Decision-Making in Information Warfare Scenarios," Future Internet, MDPI, vol. 8(3), pages 1-29, July.
    13. Peiqiu Guan & Jun Zhuang, 2016. "Modeling Resources Allocation in Attacker‐Defender Games with “Warm Up” CSF," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 776-791, April.
    14. Jie Xu & Jun Zhuang, 2016. "Modeling costly learning and counter-learning in a defender-attacker game with private defender information," Annals of Operations Research, Springer, vol. 236(1), pages 271-289, January.
    15. Wang, Jingbei & Yang, Naiding & Zhang, Yanlu & Song, Yue, 2018. "Development of the mitigation strategy against the schedule risks of the R&D project through controlling the cascading failure of the R&D network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 390-401.
    16. Zio, E. & Golea, L.R. & Sansavini, G., 2012. "Optimizing protections against cascades in network systems: A modified binary differential evolution algorithm," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 72-83.
    17. Wang, Xiaofang & Zhuang, Jun, 2011. "Balancing congestion and security in the presence of strategic applicants with private information," European Journal of Operational Research, Elsevier, vol. 212(1), pages 100-111, July.
    18. Paulson, Elisabeth C. & Linkov, Igor & Keisler, Jeffrey M., 2016. "A game theoretic model for resource allocation among countermeasures with multiple attributes," European Journal of Operational Research, Elsevier, vol. 252(2), pages 610-622.
    19. Zhang, Jing & Zhuang, Jun & Jose, Victor Richmond R., 2018. "The role of risk preferences in a multi-target defender-attacker resource allocation game," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 95-104.
    20. Cao, Minhao & Guo, Jianjun & Xiao, Hui & Wu, Liang, 2022. "Reliability analysis and optimal generator allocation and protection strategy of a non-repairable power grid system," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019304077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.