IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v122y2024ics0305048323001202.html
   My bibliography  Save this article

Optimal coverage-based placement of static leak detection devices for pipeline water supply networks

Author

Listed:
  • Blanco, Víctor
  • Martínez-Antón, Miguel

Abstract

In this paper, we provide a mathematical optimization-based framework to determine the location of leak detection devices along a network. Assuming that the devices are endowed with a known coverage area, we analyze two different models. The first model aims to minimize the number of devices to be located in order to (fully or partially) cover the volume of the network. In the second model, the number of devices is given, and the goal is to locate them to provide a coverage volume as broad as possible. Unlike other approaches in the literature, in our models, it is not assumed that the devices are located on the network (nodes or edges) but in the whole space and that the different segments in the networks may be partially covered, which allows for more flexible coverage. We also derive a method to construct initial solutions as well as a math-heuristic approach for solving the problem for larger instances. We report the results of a series of experiments on real-world water supply pipeline networks, supporting the validity of our models.

Suggested Citation

  • Blanco, Víctor & Martínez-Antón, Miguel, 2024. "Optimal coverage-based placement of static leak detection devices for pipeline water supply networks," Omega, Elsevier, vol. 122(C).
  • Handle: RePEc:eee:jomega:v:122:y:2024:i:c:s0305048323001202
    DOI: 10.1016/j.omega.2023.102956
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048323001202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2023.102956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seckler, David & Amarasinghe, Upali A. & Molden, David J. & de Silva, Radhika & Barker, Randolph, 1998. "World water demand and supply, 1990 to 2025: scenarios and issues," IWMI Research Reports 61108, International Water Management Institute.
    2. Berman, Oded & Wang, Jiamin, 2011. "The minmax regret gradual covering location problem on a network with incomplete information of demand weights," European Journal of Operational Research, Elsevier, vol. 208(3), pages 233-238, February.
    3. Blanquero, Rafael & Carrizosa, Emilio & G.-Tóth, Boglárka, 2016. "Maximal Covering Location Problems on networks with regional demand," Omega, Elsevier, vol. 64(C), pages 77-85.
    4. Blanco, Víctor & González, Gabriel & Hinojosa, Yolanda & Ponce, Diego & Pozo, Miguel A. & Puerto, Justo, 2022. "Network flow based approaches for the pipelines routing problem in naval design," Omega, Elsevier, vol. 111(C).
    5. Victor Blanco & Justo Puerto & Safae El Haj Ben Ali, 2014. "Revisiting several problems and algorithms in continuous location with $$\ell _\tau $$ ℓ τ norms," Computational Optimization and Applications, Springer, vol. 58(3), pages 563-595, July.
    6. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    7. Pelegrín, Mercedes & Xu, Liding, 2023. "Continuous covering on networks: Improved mixed integer programming formulations," Omega, Elsevier, vol. 117(C).
    8. Tedeschi, Danilo & Andretta, Marina, 2021. "New exact algorithms for planar maximum covering location by ellipses problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 114-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yanchao, 2023. "An elliptical cover problem in drone delivery network design and its solution algorithms," European Journal of Operational Research, Elsevier, vol. 304(3), pages 912-925.
    2. Blanco, Víctor & Gázquez, Ricardo & Saldanha-da-Gama, Francisco, 2023. "Multi-type maximal covering location problems: Hybridizing discrete and continuous problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1040-1054.
    3. Huizhu Wang & Jianqin Zhou, 2023. "Location of Railway Emergency Rescue Spots Based on a Near-Full Covering Problem: From a Perspective of Diverse Scenarios," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    4. De Boeck, Kim & Decouttere, Catherine & Jónasson, Jónas Oddur & Vandaele, Nico, 2022. "Vaccine supply chains in resource-limited settings: Mitigating the impact of rainy season disruptions," European Journal of Operational Research, Elsevier, vol. 301(1), pages 300-317.
    5. Pelegrín, Mercedes & Xu, Liding, 2023. "Continuous covering on networks: Improved mixed integer programming formulations," Omega, Elsevier, vol. 117(C).
    6. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    7. Amarasinghe, Upali A., 2010. "Spatial variation of water supply and demand in Sri Lanka," IWMI Conference Proceedings 211310, International Water Management Institute.
    8. Chen, Liang & Chen, Sheng-Jie & Chen, Wei-Kun & Dai, Yu-Hong & Quan, Tao & Chen, Juan, 2023. "Efficient presolving methods for solving maximal covering and partial set covering location problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 73-87.
    9. Gilani Larimi, Niloofar & Azhdari, Abolghasem & Ghousi, Rouzbeh & Du, Bo, 2022. "Integrating GIS in reorganizing blood supply network in a robust-stochastic approach by combating disruption damages," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    10. Tiffany L. Fess & James B. Kotcon & Vagner A. Benedito, 2011. "Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population," Sustainability, MDPI, vol. 3(10), pages 1-31, October.
    11. Huizhu Wang & Jianqin Zhou & Ling Zhou, 2024. "A Lattice Boltzmann Method-like Algorithm for the Maximal Covering Location Problem on the Complex Network: Application to Location of Railway Emergency-Rescue Spot," Mathematics, MDPI, vol. 12(2), pages 1-20, January.
    12. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Vatsa, Amit Kumar & Jayaswal, Sachin, 2015. "A New Formulation and Benders' Decomposition for Multi-period facility Location Problem with Server Uncertainty," IIMA Working Papers WP2015-02-07, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Berrittella, Maria & Rehdanz, Katrin & Roson, Roberto & Tol, Richard S.J., 2007. "The Economic Impact of Water Taxes: A Computable General Equilibrium Analysis with an International Data Set," Conference papers 331655, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Palanisami, Kuppannan, 2009. "Water markets as a demand management option: potentials, problems and prospects," Book Chapters,, International Water Management Institute.
    16. Luijten, J. C. & Knapp, E. B. & Jones, J. W., 2001. "A tool for community-based assessment of the implications of development on water security in hillside watersheds," Agricultural Systems, Elsevier, vol. 70(2-3), pages 603-622.
    17. Zomer, Robert J. & Bossio, Deborah A. & Trabucco, Antonio & Yuanjie, Li & Gupta, Diwan C. & Singh, Virendra P., 2007. "Trees and water: smallholder agroforestry on irrigated lands in Northern India," IWMI Research Reports 53067, International Water Management Institute.
    18. Zafar Hussain & Zongmin Wang & Jiaxue Wang & Haibo Yang & Muhammad Arfan & Daniyal Hassan & Wusen Wang & Muhammad Imran Azam & Muhammad Faisal, 2022. "A comparative Appraisal of Classical and Holistic Water Scarcity Indicators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 931-950, February.
    19. Marcela Taušová & Katarína Čulková & Dušan Kudelas & Ľubomíra Gabániová & Ján Koščo & Ibrahim Mehana, 2022. "Evaluation of Water Resources through Efficiency Index and Water Productivity in EU," Energies, MDPI, vol. 15(23), pages 1-11, December.
    20. Narayanamoorthy, A., 2009. "Drip and sprinkler irrigation in India: benefits, potential and future directions," IWMI Books, Reports H042043, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:122:y:2024:i:c:s0305048323001202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.