IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i2s1751157724000208.html
   My bibliography  Save this article

A multiple k-means cluster ensemble framework for clustering citation trajectories

Author

Listed:
  • Chakraborty, Joyita
  • Pradhan, Dinesh K.
  • Nandi, Subrata

Abstract

Citation maturity time varies for different articles. However, the impact of all articles is measured in a fixed window (2-5 years). Clustering their citation trajectories helps understand the knowledge diffusion process and reveals that not all articles gain immediate success after publication. Moreover, clustering trajectories is necessary for paper impact recommendation algorithms. It is a challenging problem because citation time series exhibit significant variability due to non-linear and non-stationary characteristics. Prior works propose a set of arbitrary thresholds and a fixed rule-based approach. All methods are primarily parameter-dependent. Consequently, it leads to inconsistencies while defining similar trajectories and ambiguities regarding their specific number. Most studies only capture extreme trajectories. Thus, a generalized clustering framework is required. This paper proposes a feature-based multiple k-means cluster ensemble framework. Multiple learners are trained for evaluating the credibility of class labels, unlike single clustering algorithms. 195,783 and 41,732 well-cited articles from the Microsoft Academic Graph data are considered for clustering short-term (10-year) and long-term (30-year) trajectories, respectively. It has linear run-time. Four distinct trajectories are obtained – Early Rise-Rapid Decline (ER-RD) (2.2%), Early Rise-Slow Decline (ER-SD) (45%), Delayed Rise-Not yet Declined (DR-ND) (53%), and Delayed Rise-Slow Decline (DR-SD) (0.8%). Individual trajectory differences for two different spans are studied. Most papers exhibit ER-SD and DR-ND patterns. The growth and decay times, cumulative citation distribution, and peak characteristics of individual trajectories' are re-defined empirically. A detailed comparative study reveals our proposed methodology can detect all distinct trajectory classes.

Suggested Citation

  • Chakraborty, Joyita & Pradhan, Dinesh K. & Nandi, Subrata, 2024. "A multiple k-means cluster ensemble framework for clustering citation trajectories," Journal of Informetrics, Elsevier, vol. 18(2).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:2:s1751157724000208
    DOI: 10.1016/j.joi.2024.101507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724000208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:2:s1751157724000208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.