IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics0306261924005774.html
   My bibliography  Save this article

GGNet: A novel graph structure for power forecasting in renewable power plants considering temporal lead-lag correlations

Author

Listed:
  • Zhu, Nanyang
  • Wang, Ying
  • Yuan, Kun
  • Yan, Jiahao
  • Li, Yaping
  • Zhang, Kaifeng

Abstract

Power forecast for each renewable power plant (RPP) in the renewable energy clusters is essential. Though existing graph neural networks (GNN)-based models achieve satisfactory prediction performance by capturing dependencies among distinct RPPs, the static graph structure employed in these models ignores crucial lead-lag correlations among RPPs, resulting from the time difference of the air flow at spatially dispersed RPPs. To address this problem, this paper proposes a novel dynamic graph structure using multiple temporal granularity groups (TGGs) to characterize the lead-lag correlations among RPPs. A granular-based GNN called GGNet is designed to generate an optimal adjacency matrix for the proposed graph structure. Specifically, a two-dimensional convolutional neural network (2D-CNN) is used to quantify the uncertain lead-lag correlations among RPPs; secondly, a gate mechanism is used to calculate a dynamic adjacency matrix; Finally, a graph attention network (GAT) is used to aggregate the information on RPPs based on the well-learned adjacency matrix. Case studies conducted using real-world datasets, with wind power plants and photovoltaic power plants, show our method outperforms state-of-the-art (SoTA) ones with better performance. Compared with the SoTA models, the RMSEN and MAEN of wind power plants for 1–4 h forecast steps decreased on average by 22.925% and 13.18%, respectively; the RMSEN and MAEN of photovoltaic power plants for 1–4 h forecast steps decreased on average by 48.95% and 18.75%, respectively. The results show that the proposed framework can generate improved performance with accuracy and robustness.

Suggested Citation

  • Zhu, Nanyang & Wang, Ying & Yuan, Kun & Yan, Jiahao & Li, Yaping & Zhang, Kaifeng, 2024. "GGNet: A novel graph structure for power forecasting in renewable power plants considering temporal lead-lag correlations," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005774
    DOI: 10.1016/j.apenergy.2024.123194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.