IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261923000302.html
   My bibliography  Save this article

Does fiscal expenditure promote green agricultural productivity gains: An investigation on corn production

Author

Listed:
  • Deng, Haiyan
  • Zheng, Wangyi
  • Shen, Zhiyang
  • Štreimikienė, Dalia

Abstract

Promoting green and low-carbon development in agriculture is the key to achieving high-quality development, in which financial expenditure on agriculture is an essential means to support its green development. This study first estimates the green productivity of twenty corn-growing provinces by the by-production model with Luenberger total factor productivity indicator in China from 2004 to 2018. Then the impact of fiscal spending on its green productivity growth and its mechanism are investigated by the econometric models. The results show that the average green total factor productivity indicator of China's twenty corn-growing provinces from 2004 to 2018 is 2.54%. The share of fiscal expenditure stock in agricultural output has a positive but insignificant direct impact on green productivity, whereas it significantly influences corn GTFP mainly through enhancing rural infrastructure. The share of fiscal expenditure stock has a larger effect on the green productivity in small corn-growing provinces. The findings suggest that the government should provide financial support suitable for local agricultural development.

Suggested Citation

  • Deng, Haiyan & Zheng, Wangyi & Shen, Zhiyang & Štreimikienė, Dalia, 2023. "Does fiscal expenditure promote green agricultural productivity gains: An investigation on corn production," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000302
    DOI: 10.1016/j.apenergy.2023.120666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923000302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yangho Chung & Rolf Fare, 1995. "Productivity and Undesirable Outputs: A Directional Distance Function Approach," Microeconomics 9511002, University Library of Munich, Germany, revised 09 Nov 1995.
    2. Xiaocang Xu & Xiuquan Huang & Jun Huang & Xin Gao & Linhong Chen, 2019. "Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions," IJERPH, MDPI, vol. 16(20), pages 1-16, October.
    3. K Hervé Dakpo & Frederic Ang, 2019. "Modelling Environmental Adjustments of Production Technologies: A Literature Review [Modélisation de technologies génératrices de pollution : revue de la littérature]," Post-Print hal-02789879, HAL.
    4. César Calderón & Luis Servén, 2004. "The Effects of Infrastructure Development on Growth and Income Distribution," Working Papers Central Bank of Chile 270, Central Bank of Chile.
    5. Tihomir Ancev & M. A.S. Azad & Francesc Hernández-Sancho (ed.), 2017. "New Directions in Productivity Measurement and Efficiency Analysis," Books, Edward Elgar Publishing, number 17409, December.
    6. Mamatzakis, E. C., 2003. "Public infrastructure and productivity growth in Greek agriculture," Agricultural Economics, Blackwell, vol. 29(2), pages 169-180, October.
    7. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    8. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    9. Kerstens, Kristiaan & Shen, Zhiyang & Van de Woestyne, Ignace, 2018. "Comparing Luenberger and Luenberger-Hicks-Moorsteen productivity indicators: How well is total factor productivity approximated?," International Journal of Production Economics, Elsevier, vol. 195(C), pages 311-318.
    10. Pittman, Russell W, 1983. "Multilateral Productivity Comparisons with Undesirable Outputs," Economic Journal, Royal Economic Society, vol. 93(372), pages 883-891, December.
    11. Boussemart, Jean Philippe & Leleu, Hervé & Shen, Zhiyang, 2015. "Environmental growth convergence among Chinese regions," China Economic Review, Elsevier, vol. 34(C), pages 1-18.
    12. Binlei Gong, 2018. "The Impact of Public Expenditure and International Trade on Agricultural Productivity in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(15), pages 3438-3453, December.
    13. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Zhou & Chunhui Wen, 2024. "Research on the Evolution of the Spatial Association Network Structure and Driving Factors of China’s Agricultural Green Development," Agriculture, MDPI, vol. 14(5), pages 1-28, April.
    2. Wei, Silin & Yang, Yinsheng & Xu, Ying, 2023. "Regional development, agricultural industrial upgrading and carbon emissions: What is the role of fiscal expenditure? —-Evidence from Northeast China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1858-1871.
    3. Zhou Zhou & Jianqiang Duan & Shaoqing Geng & Ran Li, 2023. "Spatial Network and Driving Factors of Agricultural Green Total Factor Productivity in China," Energies, MDPI, vol. 16(14), pages 1-26, July.
    4. Jianlin Wang & Junbo Tong & Zhong Fang, 2024. "Assessing the Drivers of Sustained Agricultural Economic Development in China: Agricultural Productivity and Poverty Reduction Efficiency," Sustainability, MDPI, vol. 16(5), pages 1-18, March.
    5. Zhenyu Qi & Yuezhou You, 2024. "The Impact of the Rural Digital Economy on Agricultural Green Development and Its Mechanism: Empirical Evidence from China," Sustainability, MDPI, vol. 16(9), pages 1-23, April.
    6. Huang, Tianwei & Yang, Lei & Liu, Yufei & Liu, Haibing, 2023. "Dutch disease revisited: China's provincial data perspective with the role of green finance and technology peak," Resources Policy, Elsevier, vol. 83(C).
    7. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    8. Dahao Guo & Yuancheng Lin & Min Wang & Zirou Huang, 2023. "Spatial Distribution Pattern, Evolution and Influencing Mechanism of Ecological Farms in China," Land, MDPI, vol. 12(7), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfredsson, Eva & Månsson, Jonas & Vikström, Peter, 2016. "Internalising external environmental effects in efficiency analysis," Economic Analysis and Policy, Elsevier, vol. 51(C), pages 22-31.
    2. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    3. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    4. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    5. Shen, Zhiyang & Baležentis, Tomas & Chen, Xueli & Valdmanis, Vivian, 2018. "Green growth and structural change in Chinese agricultural sector during 1997–2014," China Economic Review, Elsevier, vol. 51(C), pages 83-96.
    6. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    7. Wenyin Cheng & Zhusong Yang & Xia Pan & Tomas Baležentis & Xueli Chen, 2020. "Evolution of Carbon Shadow Prices in China’s Industrial Sector during 2003–2017: A By-Production Approach," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    8. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    9. Dakpo, K & Jeanneaux, Philippe & Latruffee, Laure, 2015. "Empirical comparison of pollution generating technologies in nonparametric modelling: The case of greenhouse gas emissions in French sheep meat farming," 2015 Conference, August 9-14, 2015, Milan, Italy 211557, International Association of Agricultural Economists.
    10. Harald Dyckhoff & Rainer Souren, 2023. "Are important phenomena of joint production still being neglected by economic theory? A review of recent literature," Journal of Business Economics, Springer, vol. 93(6), pages 1015-1053, August.
    11. Shen, Zhiyang & Wu, Haitao & Bai, Kaixuan & Hao, Yu, 2022. "Integrating economic, environmental and societal performance within the productivity measurement," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    12. Qingyou Yan & Fei Zhao & Xu Wang & Tomas Balezentis, 2021. "The Environmental Efficiency Analysis Based on the Three-Step Method for Two-Stage Data Envelopment Analysis," Energies, MDPI, vol. 14(21), pages 1-14, October.
    13. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    14. Emir Malikov & Raushan Bokusheva & Subal C. Kumbhakar, 2018. "A hedonic-output-index-based approach to modeling polluting technologies," Empirical Economics, Springer, vol. 54(1), pages 287-308, February.
    15. Emir Malikov & Subal C. Kumbhakar & Efthymios G. Tsionas, 2015. "Bayesian Approach to Disentangling Technical and Environmental Productivity," Econometrics, MDPI, vol. 3(2), pages 1-23, June.
    16. Hailu, Atakelty & Veeman, Terrence S., 2001. "Alternative methods for environmentally adjusted productivity analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 211-218, September.
    17. West, Steele, 2021. "The Estimation of Farm Business Inefficiency in the Presence of Debt Repayment," 2021 Conference, August 17-31, 2021, Virtual 315048, International Association of Agricultural Economists.
    18. Dakpo, K Hervé & Lansink, Alfons Oude, 2019. "Dynamic pollution-adjusted inefficiency under the by-production of bad outputs," European Journal of Operational Research, Elsevier, vol. 276(1), pages 202-211.
    19. Zhensheng Chen & Xueli Chen & Tomas Baležentis & Xiaoqing Gan & Vivian Valdmanis, 2020. "Productivity change and its driving forces in Chinese healthcare sector," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-16, December.
    20. Riera, Félix Sebastián & Brümmer, Bernhard, 2022. "Environmental efficiency of wine grape production in Mendoza, Argentina," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.