IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v264y2020ics030626192030218x.html
   My bibliography  Save this article

Economic analysis of grid integration of variable solar and wind power with conventional power system

Author

Listed:
  • Yao, Xing
  • Yi, Bowen
  • Yu, Yang
  • Fan, Ying
  • Zhu, Lei

Abstract

Variable renewable electricity (VRE) is expected to play an important role in global decarbonization. However, due to VRE’s intermittency and uncertainty, integrating VRE into the power system may cause additional integration costs for both power systems and consumers. Estimating these integration costs can provide insights for power system planning, support policy making and power market designs. In this paper, the integration costs of wind and solar on both demand and supply sides are quantitatively investigated by an economic power dispatch model combined with Monte Carlo simulation. A case study of Guangdong Province in China is conducted under three scenarios of power mix changes (only increasing the VRE installation; replacing the existing coal-fired power; and replacing the existing coal-fired power without power storage). The results show that integration costs from both supply and demand sides are non-negligible when VRE replaces existing capacity, and the costs are increasing with the penetration rate of VRE. On supply side, it ranges from −2.3 to 12.1 $/MWh for wind penetration from 5% to 30%, and −5.5 to 7.1 $/MWh for that of solar penetration. Moreover, consumers on demand side will bear −7.3 to 185.9 $/MWh integration costs for wind and solar integration, which is much higher than the supply side. In addition, solar power has a lower integration cost than wind power due to a more consistent power output with the load curve of power demand on the time scale. Moreover, our results reveal that blindly reducing the renewable energy curtailment rate may not be cost-effective.

Suggested Citation

  • Yao, Xing & Yi, Bowen & Yu, Yang & Fan, Ying & Zhu, Lei, 2020. "Economic analysis of grid integration of variable solar and wind power with conventional power system," Applied Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:appene:v:264:y:2020:i:c:s030626192030218x
    DOI: 10.1016/j.apenergy.2020.114706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192030218X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Sitao & Zhang, Sufang & Andrews-Speed, Philip, 2019. "Using diverse market-based approaches to integrate renewable energy: Experiences from China," Energy Policy, Elsevier, vol. 125(C), pages 330-337.
    2. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    3. Paul Simshauser, 2011. "The Hidden Costs of Wind Generation in a Thermal Power System: What Cost?," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 44(3), pages 269-292, September.
    4. DeCarolis, Joseph F. & Keith, David W., 2005. "The Costs of Wind's Variability: Is There a Threshold?," The Electricity Journal, Elsevier, vol. 18(1), pages 69-77.
    5. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    6. Ding, Yi & Shao, Changzheng & Yan, Jinyue & Song, Yonghua & Zhang, Chi & Guo, Chuangxin, 2018. "Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China," Applied Energy, Elsevier, vol. 228(C), pages 426-436.
    7. Li, Li & Tan, Zhongfu & Wang, Jianhui & Xu, Jun & Cai, Chengkai & Hou, Yong, 2011. "Energy conservation and emission reduction policies for the electric power industry in China," Energy Policy, Elsevier, vol. 39(6), pages 3669-3679, June.
    8. Li, Ying & Lukszo, Zofia & Weijnen, Margot, 2016. "The impact of inter-regional transmission grid expansion on China’s power sector decarbonization," Applied Energy, Elsevier, vol. 183(C), pages 853-873.
    9. Soroudi, Alireza & Amraee, Turaj, 2013. "Decision making under uncertainty in energy systems: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 376-384.
    10. Bachner, Gabriel & Steininger, Karl W. & Williges, Keith & Tuerk, Andreas, 2019. "The economy-wide effects of large-scale renewable electricity expansion in Europe: The role of integration costs," Renewable Energy, Elsevier, vol. 134(C), pages 1369-1380.
    11. Cheng, Chuntian & Chen, Fu & Li, Gang & Ristić, Bora & Mirchi, Ali & Qiyu, Tu & Madani, Kaveh, 2018. "Reform and renewables in China: The architecture of Yunnan's hydropower dominated electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 682-693.
    12. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    13. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2016. "Inter-regional power grid planning up to 2030 in China considering renewable energy development and regional pollutant control: A multi-region bottom-up optimization model," Applied Energy, Elsevier, vol. 184(C), pages 641-658.
    14. Lin, Jiang & Kahrl, Fredrich & Yuan, Jiahai & Chen, Qixin & Liu, Xu, 2019. "Economic and carbon emission impacts of electricity market transition in China: A case study of Guangdong Province," Applied Energy, Elsevier, vol. 238(C), pages 1093-1107.
    15. Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
    16. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    17. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Liu & Yihang Wei & Yu Du & Tao Lv, 2022. "Mechanism and Influencing Factors of Low-Carbon Coal Power Transition under China’s Carbon Trading Scheme: An Evolutionary Game Analysis," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    2. Yuwei Zhang & Wenying Liu & Yue Huan & Qiang Zhou & Ningbo Wang, 2020. "An Optimal Day-Ahead Thermal Generation Scheduling Method to Enhance Total Transfer Capability for the Sending-Side System with Large-Scale Wind Power Integration," Energies, MDPI, vol. 13(9), pages 1-19, May.
    3. Abhishek Sharma & Abhinav Sharma & Vibhu Jately & Moshe Averbukh & Shailendra Rajput & Brian Azzopardi, 2022. "A Novel TSA-PSO Based Hybrid Algorithm for GMPP Tracking under Partial Shading Conditions," Energies, MDPI, vol. 15(9), pages 1-21, April.
    4. Wang, Weiwei & Tu, Jie & Xu, Hengchang & Qi, Fengjun & Tavasoli, Masoumeh & Su, Zhanguo, 2024. "Tow-sectional optimized thermodinamical cycle using different renewable energies including geothermal and biogas to produce stable productions," Renewable Energy, Elsevier, vol. 220(C).
    5. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    6. Zhou, Xiaoxiao & Lin, Junjie & Wang, Lu & Huang, Hongyun & Zhao, Xin, 2022. "Wind power resources and China's sustainable development roadmap: Evidence from China," Resources Policy, Elsevier, vol. 79(C).
    7. Wang, Ge & Zhang, Qi & Su, Bin & Shen, Bo & Li, Yan & Li, Zhengjun, 2021. "Coordination of tradable carbon emission permits market and renewable electricity certificates market in China," Energy Economics, Elsevier, vol. 93(C).
    8. Zhang, Chongchong & Cai, Xiangyu & Lin, Boqiang, 2023. "The low-carbon transition of China's power sector: Scale effect of grid upgrading," Energy, Elsevier, vol. 285(C).
    9. Qi, Yuchen & Hu, Wei & Dong, Yu & Fan, Yue & Dong, Ling & Xiao, Ming, 2020. "Optimal configuration of concentrating solar power in multienergy power systems with an improved variational autoencoder," Applied Energy, Elsevier, vol. 274(C).
    10. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    11. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.
    12. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    13. Neetzow, Paul, 2021. "The effects of power system flexibility on the efficient transition to renewable generation," Applied Energy, Elsevier, vol. 283(C).
    14. Neeraj Bokde & Bo Tranberg & Gorm Bruun Andresen, 2020. "A graphical approach to carbon-efficient spot market scheduling for Power-to-X applications," Papers 2009.03160, arXiv.org.
    15. Wang, Lei & He, Yigang, 2022. "M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions," Applied Energy, Elsevier, vol. 324(C).
    16. Lin, Boqiang & Xie, Yongjing, 2023. "The impact of government subsidies on capacity utilization in the Chinese renewable energy industry: Does technological innovation matter?," Applied Energy, Elsevier, vol. 352(C).
    17. Deng, Xu & Lv, Tao & Hou, Xiaoran & Xu, Jie & Pi, Duyang & Liu, Feng & Li, Na, 2022. "Regional disparity of flexibility options for integrating variable renewable energy," Renewable Energy, Elsevier, vol. 192(C), pages 641-654.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    2. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    3. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    4. Newbery, David M., 2023. "High renewable electricity penetration: Marginal curtailment and market failure under “subsidy-free” entry," Energy Economics, Elsevier, vol. 126(C).
    5. Atherton, John & Hofmeister, Markus & Mosbach, Sebastian & Akroyd, Jethro & Farazi, Feroz & Kraft, Markus, 2023. "British imbalance market paradox: Variable renewable energy penetration in energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Garcia Latorre, Francisco Javier & Quintana, Jose Juan & de la Nuez, Ignacio, 2019. "Technical and economic evaluation of the integration of a wind-hydro system in El Hierro island," Renewable Energy, Elsevier, vol. 134(C), pages 186-193.
    7. Deng, Xu & Lv, Tao & Xu, Jie & Hou, Xiaoran & Liu, Feng, 2022. "Assessing the integration effect of inter-regional transmission on variable power generation under renewable energy consumption policy in China," Energy Policy, Elsevier, vol. 170(C).
    8. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    9. Simpson, J.G. & Hanrahan, G. & Loth, E. & Koenig, G.M. & Sadoway, D.R., 2021. "Liquid metal battery storage in an offshore wind turbine: Concept and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Lion Hirth & Falko Ueckerdt & Ottmar Edenhofer, 2014. "Why Wind Is Not Coal: On the Economics of Electricity," Working Papers 2014.39, Fondazione Eni Enrico Mattei.
    11. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    12. Liu, Laibao & Wang, Zheng & Wang, Yang & Wang, Jun & Chang, Rui & He, Gang & Tang, Wenjun & Gao, Ziqi & Li, Jiangtao & Liu, Changyi & Zhao, Lin & Qin, Dahe & Li, Shuangcheng, 2020. "Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Jiang, Bo & Kong, Xue, 2019. "Optimization of electricity generation and interprovincial trading strategies in Southern China," Energy, Elsevier, vol. 174(C), pages 696-707.
    14. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    15. Otsuki, Takashi, 2017. "Costs and benefits of large-scale deployment of wind turbines and solar PV in Mongolia for international power exports," Renewable Energy, Elsevier, vol. 108(C), pages 321-335.
    16. Lauer, Markus & Thrän, Daniela, 2017. "Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?," Energy Policy, Elsevier, vol. 109(C), pages 324-336.
    17. Jie Zhu & Buxiang Zhou & Yiwei Qiu & Tianlei Zang & Yi Zhou & Shi Chen & Ningyi Dai & Huan Luo, 2023. "Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems," Energies, MDPI, vol. 16(16), pages 1-19, August.
    18. Li, Yanxue & Gao, Weijun & Ruan, Yingjun & Ushifusa, Yoshiaki, 2018. "The performance investigation of increasing share of photovoltaic generation in the public grid with pump hydro storage dispatch system, a case study in Japan," Energy, Elsevier, vol. 164(C), pages 811-821.
    19. Liu, Tingting & Xu, Jiuping, 2021. "Equilibrium strategy based policy shifts towards the integration of wind power in spot electricity markets: A perspective from China," Energy Policy, Elsevier, vol. 157(C).
    20. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:264:y:2020:i:c:s030626192030218x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.