# Bielefeld University, Center for Mathematical Economics

# Working Papers

**Contact information of Bielefeld University, Center for Mathematical Economics:**

Postal: Postfach 10 01 31, 33501 Bielefeld

Phone: +49(0)521-106-4907

Web page: http://www.imw.uni-bielefeld.de/

More information through EDIRC

**For corrections or technical questions regarding this series, please contact
(Dr. Frederik Herzberg)** **Series handle:** repec:bie:wpaper
**Citations RSS feed:** at CitEc
**Impact factors**:
Simple
(last 10 years),
Recursive
(10),
Discounted
(10),
Recursive discounted
(10),
H-Index
(10),
Aggregate
(10)
**Access and download statistics****Top item:** By citations. By downloads (last 12 months).

More pages of listings: 0| **1**

### 1999

**314 Symmetric Homogeneous Local Interaction***by*Axel Ostmann & Martha Saboyá**313 The semireactive bargaining set of a cooperative game***by*Sudhoelter,P. & Potters,J.A.M.**312 Do Monopolies Justifiably Fear Environmental Tax Reforms?***by*Thorsten Bayindir-Upmann**311 Bidding for envy-freeness: A procedural approach to n-player fair-division problems***by*Claus-Jochen Haake & Matthias G. Raith & Francis Edward Su**310 A universal meta bargaining realization of the Nash solution***by*Trockel,W.**309 Strategic Environmental Trade Policy Under Free Entry of Firms***by*Thorsten Bayindir-Upmann**308 Unique Nash implementation for a class of bargaining solutions***by*Trockel,W.**307 Some Classes of Potential and Semi-Potential Games***by*Nikolai S. Kukushkin**306 On the Nash program for the Nash bargaining solution***by*Trockel,W.**305 Integrating the Nash program into mechanism theory***by*Trockel,W.

### 1998

**304 Should High-Tax Countries Pursue Revenue-Neutral Ecological Tax Reforms?***by*Thorsten Bayindir-Upmann & Matthias G. Raith**303 Mechanisms in the Core of a Fee Game***by*Joachim Rosenmüller**302 A Characterization of vNM-Stable Sets for Linear Production Games***by*Joachim Rosenmüller & Benyamin Shitovitz**301 Implementation of the Kalai-Smorodinsky Bargaining Solution in Dominant Strategies***by*Claus-Jochen Haake**300 Fair-Negotiation Procedures***by*Matthias G. Raith**299 Supporting Cooperative Multi-Issue Negotiations***by*Matthias G. Raith**298 ARTUS: The Adaptable Round Table with a User-specific Surface***by*Matthias G. Raith & Helge Wilker**297 An Axiomatization of the Core***by*Yan-An Hwang & Peter Sudhölter**296 Symmetries of Game with Public and Private Objectives***by*Nikolai S. Kukushkin**295 Adjusted Winner: An Algorithm for Implementing Bargaining Solutions in Multi-Issue Negotiations***by*Matthias G. Raith & Andreas Welzel**294 System of Decreasing Reactions and their Fixed Points***by*Nikolai S. Kukushkin**293 Large Totally Balanced Games***by*Joachim Rosenmüller**292 The Positive Prekernel of a Cooperative Game***by*Bezalel Peleg & Peter Sudhölter**291 Rationalizability of the Nash Bargaining Solution***by*Walter Trockel**290 Single-Peakedness and Coalition-Proofness***by*Bezalel Peleg & Peter Sudhölter**289 An Algorithm for Incentive Compatible Mechanisms of Fee-Games***by*Elvira Thelichmann**288 The Complexity of a Number as a Quantitative Predictor of the Frequency of Responses under Decimal Perception***by*Wulf Albers**287 A Model of the Concession Behavior in the Sequence of Offers of the German Electronic Stock Exchange Trading Market (IBIS) Based on the Prominence Structure of the Bid Ask Spread***by*Wulf Albers & Andreas Uphaus & Bodo Vogt**286 The Boundedly Rational Decision Process Creating Probability Responses - Empirical Results Confirming the Theory of Prominence***by*Wulf Albers & Andreas Guentzel**285 Cash Equivalent versus Market Value - An Experimental Study of Differences and Common Principles of Evaluation***by*Wulf Albers**284 Foundations of a Theory of Prominence in the Decimal System -- Part VI: Evaluation of Lotteries with Two Alternatives -- A Normative Benchmark of Risk Neutrality that Predicts Median Behavior of Subjects***by*Wulf Albers**283 Connection Between Ultimatum Behavior and Reciprocity in a Combined Ultimatum-Reciprocity Game***by*Bodo Vogt**282 The Price Response Function and Logarithmic Perception of Prices and Quantities***by*Wulf Albers & Fred Fegel & Bodo Vogt**281 Criteria For Fair Divisions in Ultimatum Games***by*Bodo Vogt**280 Stock Price Clustering and Numerical Perception***by*Wulf Albers & Andreas Uphaus & Bodo Vogt**279 The Strength of Reciprocity in Reciprocity Game***by*Bodo Vogt

### 1997

**278 Reference Functions and Solutions to Bargaining Problems with Claims***by*Anke Gerber**277 The Averaging Mechanism***by*Elisabeth Naeve-Steinweg**276 The Nash Bargaining Solution is Nash Implementable***by*Jörg Naeve**275 On the Value of Discounted Stochastic Games***by*Jean-Michel Coulomb**274 Environmental Taxation and the Double Dividend: A Drawback for a Revenue-Neutral Tax Reform***by*Thorsten Bayindir-Upmann & Matthias Raith**273 An Extension of the Raiffa-Kalai-Smorodinsky Solution to Bargaining Problems with Claims***by*Anke Gerber**272 Selection between Pareto-Optimal Outcomes in 2-Person Bargaining***by*Bodo Vogt & Wulf Albers**271 Foundations of a Theory of Prominence in the Decimal System -- Part V: Operations on Scales, and Evaluation of Prospects***by*Wulf Albers**270 Foundations of a Theory of Prominence in the Decimal System -- Part IV: Task-Dependence of Finest Perceived Full Step of the Money Scale, Nonexistence of General Utility Functions, and Related Paradoxa***by*Wulf Albers**269 Foundations of a Theory of Prominence in the Decimal System -- Part III: Perception of Numerical Information, and Relations to Traditional Solution Concepts***by*Wulf Albers**268 The Selection of Mixed Strategies in 2x2 Bimatrix Games***by*Bodo Vogt & Wulf Albers**267 Equilibrium Selection in 2x2 Bimatrix Games with Preplay Communication***by*Bodo Vogt & Wulf Albers**266 Foundations of a Theory of Prominence in the Decimal System - Part II: Exactness Selection Rule, and Confirming Results***by*Wulf Albers & Eike Albers & Leif Albers & Bodo Vogt**265 Foundations of a Theory of Prominence in the Decimal System - Part I: Numerical Response as a Process, Exactness, Scales, and Structure of Scales***by*Wulf Albers

### 1996

**264 Coalition Formation in General NTU Games***by*Anke Gerber**263 Characterizations of Two Extended Walras Solutions for Open Economies***by*Bernd Korthues**262 Nucleoli as Maximizers of Collective Satisfaction Functions***by*Peter Sudhölter & Bezalel Peleg**261 An Improvement on the Existence Proof of Joint Plan Equilibria***by*Robert Samuel Simon**260 The Difference Between Common Knowledge of Formulas and Sets: Part II***by*Robert Samuel Simon**259 The Welfare Implications of an Ecological Tax Reform under Monopoly***by*Thorsten Bayindir-Upmann**258 A Note on Existence of Equilibria in Generalized Economies***by*Bezalel Peleg**257 The Canonical Extensive Form of a Game Form - Part II - Representation***by*Peter Sudhölter & Joachim Rosenmüller & Bezalel Peleg**256 Consistency and its Converse. An Approach for Economies***by*Bernd Korthues**255 The Existence of Nash Equilibria in Two-Person, Infinitely Repeated Undiscounted Games of Incomplete Information: A Survey***by*Robert Samuel Simon**254 Partial Equilibrium in Pure Exchange Economies***by*Bezalel Peleg**253 The Canonical Extensive Form of a Game Form - Part I - Symmetries***by*Bezalel Peleg & Peter Sudhölter & Joachim Rosenmüller**252 The Difference Between Common Knowledge of Formulas and Sets: Part I***by*Robert Samuel Simon**251 A Further Extension of the KKMS Theorem***by*Yakar Kannai & Myrna H. Wooders

### 1995

**250 Axiomatizations of Game Theoretical Solutions for One-Output Cost Sharing Problems***by*Peter Sudhölter**249 Two Games of Interjurisdictional Competition where Local Governments Provide Industrial Public Goods***by*Thorsten Bayindir-Upmann**248 Separable Aggregation and the Existence of Nash Equilibrium***by*Nikolai S. Kukushkin**247 A Formal Approach to Nash's Program***by*Bezalel Peleg**246 Airport Problems and Consistent Solution Rules***by*Jos Potters & Peter Sudhölter**245 An Exact Implementation of the Nash Bargaining Solution in Dominant Strategies***by*Walter Trockel**244 The Nash Solution as a von Neumann-Morgenstern Utility Function on Bargaining Games***by*Anke Gerber**243 Pigouvian Taxes May Fail Even in a Perfect World***by*Till Requate**242 Alienated Extensions and Common Knowledge Worlds***by*Robert Samuel Simon**241 Existence of Generalized Walras Equilibria for Generalized Economies***by*Bernd Korthues**240 The Shapley Value for Countably Many Players***by*Diethard Pallaschke & Joachim Rosenmüller

### 1994

**228 Bargaining with Incomplete Information - An Axiomatic Approach***by*Joachim Rosenmüller

### 1992

**215 Representation of CU-Games and the Expected Contract Value***by*Joachim Rosenmüller

### 1990

**216 Cooperative Games with Incomplete Information***by*Joachim Rosenmüller

### 1989

**179 Implementing the Modified LH-Algorithm***by*Krohn, I. & Moltzahn, S. & Joachim Rosenmüller & Sudhölter, P. & Wallmeier, H.-M.

### 1986

**153 The Role of Nondegeneracy and Homogeneity in n-person Game Theory: An Equivalence Theorem***by*Joachim Rosenmüller

### 1985

**143 Homogeneous Games with Countably Many Players***by*Joachim Rosenmüller

### 1984

**137 The Structure of Homogeneous Games***by*Joachim Rosenmüller

### 1982

**115 On Homogeneous Weights for Simple Games***by*Joachim Rosenmüller

### 1980

**103 L.P.-Games with Sufficiently Many Players***by*Joachim Rosenmüller**093 Values of Non-Sidepayment Games and their Application in the Theory of Public Goods***by*Joachim Rosenmüller

### 1979

**086 On Values, Location Conflicts, and Public Goods***by*Joachim Rosenmüller

### 1978

**075 Selection of Values for Non-Sidepayment Games***by*Joachim Rosenmüller

### 1976

**045 A Simple Game Model of Kidnapping***by*Reinhard Selten

### 1974

**023 Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games***by*Reinhard Selten**022 A Further Note On Rawls's Theory***by*John C. Harsanyi**018 The Chain Store Paradox***by*Reinhard Selten

### 1973

**008 A Simple Model of Imperfect Competition, where 4 are Few and 6 are Many***by*Reinhard Selten