Advanced Search
MyIDEAS: Login

Citations for "Game Theory Via Revealed Preferences"

by Indrajit Ray & Lin Zhou

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window
  1. Sun,N. & Trockel,W. & Yang,Z., 2004. "Competitive outcomes and endogenous coalition formation in an n-person game," Working Papers 358, Bielefeld University, Center for Mathematical Economics.
  2. Carvajal, Andrés & González, Natalia, 2014. "On refutability of the Nash bargaining solution," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 177-186.
  3. Ray, Indrajit & Snyder, Susan, 2013. "Observable implications of Nash and subgame-perfect behavior in extensive games," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 471-477.
  4. BOSSERT, Walter & SPRUMONT, Yves, 2013. "Every Choice Function is Backwards-Induction Rationalizable," Cahiers de recherche 2013-01, Universite de Montreal, Departement de sciences economiques.
  5. Diego Lanzi, 2010. "Embedded choices," Theory and Decision, Springer, vol. 68(3), pages 263-280, March.
  6. Stefano Vannucci, 2009. "Choosing VNM-stable sets of the revealed dominance digraph," Department of Economics University of Siena 576, Department of Economics, University of Siena.
  7. Walter Bossert & Yves Sprumont, 2002. "Core rationalizability in two-agent exchange economies," Economic Theory, Springer, vol. 20(4), pages 777-791.
  8. BOSSERT, Walter & SUZUMURA, Kotaro, 2006. "Non-Deteriorating Choice without Full Transitivity," Cahiers de recherche 10-2006, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  9. Ehlers, Lars & Sprumont, Yves, 2008. "Weakened WARP and top-cycle choice rules," Journal of Mathematical Economics, Elsevier, vol. 44(1), pages 87-94, January.
  10. Carvajal, Andres & Quah, John K.-H., 2009. "A Nonparametric Analysis of the Cournot Model," The Warwick Economics Research Paper Series (TWERPS) 922, University of Warwick, Department of Economics.
  11. Andrés Carvajal, . "Testable Restrictions of Nash Equilibrium in Games with Continuous Domains," Borradores de Economia 229, Banco de la Republica de Colombia.
  12. Demuynck, Thomas & Lauwers, Luc, 2009. "Nash rationalization of collective choice over lotteries," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 1-15, January.
  13. Carvajal, Andres & Ray, Indrajit & Snyder, Susan, 2004. "Equilibrium behavior in markets and games: testable restrictions and identification," Journal of Mathematical Economics, Elsevier, vol. 40(1-2), pages 1-40, February.
  14. Lee, SangMok, 2012. "The testable implications of zero-sum games," Journal of Mathematical Economics, Elsevier, vol. 48(1), pages 39-46.
  15. Bossert, Walter & Sprumont, Yves, 2003. "Efficient and non-deteriorating choice," Mathematical Social Sciences, Elsevier, vol. 45(2), pages 131-142, April.
  16. Pierre-André Chiappori & Olivier Donni, 2006. "Learning from a Piece of Pie: the Empirical Content of Nash Bargaining," Cahiers de recherche 0619, CIRPEE.
  17. T. Demuynck & L. Lauwers, 2005. "Nash rationalizability of collective choice over lotteries," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/301, Ghent University, Faculty of Economics and Business Administration.
  18. Walter Trockel, 2004. "Game Theory: The Language of Social Science?," Working Papers 357, Bielefeld University, Center for Mathematical Economics.
  19. Demuynck, Thomas, 2011. "The computational complexity of rationalizing boundedly rational choice behavior," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 425-433.
  20. Xu, Yongsheng & Zhou, Lin, 2007. "Rationalizability of choice functions by game trees," Journal of Economic Theory, Elsevier, vol. 134(1), pages 548-556, May.