IDEAS home Printed from https://ideas.repec.org/r/tpr/restat/v61y1979i2p169-79.html
   My bibliography  Save this item

Interfuel Substitution and the Industrial Demand for Energy: An International Comparison

Citations

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. Long-run Estimates of Interfuel and Interfactor Elasticities
    by noreply@blogger.com (David Stern) in Stochastic Trend on 2016-01-20 16:11:00

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Martin, Will, 2000. "Reducing carbon dioxide emissions through joint implementation of projects," Policy Research Working Paper Series 2359, The World Bank.
  2. Manish Gupta & Ramprasad Sengupta, 2013. "Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries," Review of Market Integration, India Development Foundation, vol. 5(3), pages 363-388, December.
  3. Ramcharran, Harri, 2001. "OPEC's production under fluctuating oil prices: further test of the target revenue theory," Energy Economics, Elsevier, vol. 23(6), pages 667-681, November.
  4. Carlo Carraro & Enrica De Cian & Lea Nicita, 2009. "Modeling Biased Technical Change. Implications For Climate Policy," Working Papers 2009_27, Department of Economics, University of Venice "Ca' Foscari".
  5. Dahl, Carol & Ko, James, 1998. "The effect of deregulation on US fossil fuel substitution in the generation of electricity," Energy Policy, Elsevier, vol. 26(13), pages 981-988, November.
  6. Haller, Stefanie A. & Hyland, Marie, 2014. "Capital–energy substitution: Evidence from a panel of Irish manufacturing firms," Energy Economics, Elsevier, vol. 45(C), pages 501-510.
  7. Ali Jadidzadeh and Apostolos Serletis, 2016. "Sectoral Interfuel Substitution in Canada: An Application of NQ Flexible Functional Forms," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  8. Agnar Sandmo, 2003. "Environmental Taxation and Revenue for Development," WIDER Working Paper Series DP2003-86, World Institute for Development Economic Research (UNU-WIDER).
  9. Martin, Ralf, 2009. "Why is the US so energy intensive? Evidence from US multinationals in the UK," LSE Research Online Documents on Economics 28703, London School of Economics and Political Science, LSE Library.
  10. Matisoff, Daniel C. & Noonan, Douglas S. & Cui, Jinshu, 2014. "Electric utilities, fuel use, and responsiveness to fuel prices," Energy Economics, Elsevier, vol. 46(C), pages 445-452.
  11. Bazhanov, Andrei, 2007. "The peak of oil extraction and consistency of the government's short- and long-run policies," MPRA Paper 2507, University Library of Munich, Germany.
  12. Miljkovic, Dragan & Dalbec, Nathan & Zhang, Lei, 2016. "Estimating dynamics of US demand for major fossil fuels," Energy Economics, Elsevier, vol. 55(C), pages 284-291.
  13. Bernstein, Ronald & Madlener, Reinhard, 2011. "Responsiveness of Residential Electricity Demand in OECD Countries: A Panel Cointegation and Causality Analysis," FCN Working Papers 8/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  14. John Baffes & Alain Kabundi & Peter Nagle, 2022. "The role of income and substitution in commodity demand [Modelling OECD industrial energy demand: asymmetric price responses and energy-saving technical change]," Oxford Economic Papers, Oxford University Press, vol. 74(2), pages 498-522.
  15. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
  16. Floros, Nikolaos & Vlachou, Andriana, 2005. "Energy demand and energy-related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax," Energy Economics, Elsevier, vol. 27(3), pages 387-413, May.
  17. Robinson, James A. & Srinivasan, T.N., 1993. "Long-term consequences of population growth: Technological change, natural resources, and the environment," Handbook of Population and Family Economics, in: M. R. Rosenzweig & Stark, O. (ed.), Handbook of Population and Family Economics, edition 1, volume 1, chapter 21, pages 1175-1298, Elsevier.
  18. Kozo Mayumi & Mario Giampietro & Jesus Ramos-Martin, 2010. "A Critical Analysis of Dimensions and Curve Fitting Practice in Economics," UHE Working papers 2010_01, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
  19. Ruud de Mooij & A. Bovenberg, 1998. "Environmental Taxes, International Capital Mobility and Inefficient Tax Systems: Tax Burden vs. Tax Shifting," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 5(1), pages 7-39, February.
  20. Bas Jacobs & Rick van der Ploeg, 2017. "Should Pollution Taxes be Targeted at Income Redistribution?," CESifo Working Paper Series 6599, CESifo.
  21. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
  22. Bacon, Robert, 1992. "Measuring the possibilities of interfuel substitution," Policy Research Working Paper Series 1031, The World Bank.
  23. Guo, Charles C. & Tybout, James R., 1994. "How relative prices affect fuel use patterns in manufacturing : plant - level evidence from Chile," Policy Research Working Paper Series 1297, The World Bank.
  24. Suh, Dong Hee, 2015. "Identifying Factor Substitution and Energy Intensity in the U.S. Agricultural Sector," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205264, Agricultural and Applied Economics Association.
  25. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  26. Natalia Gennadyevna Zakharchenko & Olga Valeryevna Dyomina, 2015. "Modelling Energy - Economy Interactions: The Far East Experience," Spatial Economics=Prostranstvennaya Ekonomika, Economic Research Institute, Far Eastern Branch, Russian Academy of Sciences (Khabarovsk, Russia), issue 1, pages 62-90.
  27. Medina, J. & Vega-Cervera, J. A., 2001. "Energy and the non-energy inputs substitution: evidence for Italy, Portugal and Spain," Applied Energy, Elsevier, vol. 68(2), pages 203-214, February.
  28. Mufutau Opeyemi Bello & Sakiru Adebola Solarin, 2022. "Searching for sustainable electricity generation: The possibility of substituting coal and natural gas with clean energy," Energy & Environment, , vol. 33(1), pages 64-84, February.
  29. Bousquet, Alain & Ladoux, Norbert, 2006. "Flexible versus designated technologies and interfuel substitution," Energy Economics, Elsevier, vol. 28(4), pages 426-443, July.
  30. Elena Lagomarsino & Karen Turner, 2017. "Is the production function Translog or CES? An empirical illustration using UK data," Working Papers 1713, University of Strathclyde Business School, Department of Economics.
  31. Alain Bousquet & Marc Ivaldi & Norbert Ladoux, 1989. "La demande d'énergie des industries laitières : une analyse microéconomique," Économie et Prévision, Programme National Persée, vol. 91(5), pages 75-90.
  32. Andreas Andrikopoulos & John Loizides, 1998. "Cost structure and productivity growth in European railway systems," Applied Economics, Taylor & Francis Journals, vol. 30(12), pages 1625-1639.
  33. Anwar Shah & Bjorn Larsen, 2014. "Carbon taxes, the greenhouse effect, and developing countries," Annals of Economics and Finance, Society for AEF, vol. 15(1), pages 353-402, May.
  34. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
  35. Andrei V. Bazhanov, 2008. "Maximin-optimal sustainable growth with nonrenewable resource and externalities," EERI Research Paper Series EERI_RP_2008_11, Economics and Econometrics Research Institute (EERI), Brussels.
  36. Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.
  37. Lundmark, Robert & Söderholm, Patrik & Lundmark, Robert, 2003. "Structural changes in Swedish wastepaper demand: a variable cost function approach," Journal of Forest Economics, Elsevier, vol. 9(1), pages 41-63.
  38. Christopoulos, Dimitris K., 2000. "The demand for energy in Greek manufacturing," Energy Economics, Elsevier, vol. 22(5), pages 569-586, October.
  39. Imen Gam & Jaleleddine Ben Rejeb, 2012. "How Can We Assess the Relation Between Equipment, Price and Electricity Demand in Tunisia?," International Journal of Energy Economics and Policy, Econjournals, vol. 2(3), pages 159-166.
  40. Dong Hee Suh, 2015. "Declining Energy Intensity in the U.S. Agricultural Sector: Implications for Factor Substitution and Technological Change," Sustainability, MDPI, vol. 7(10), pages 1-14, September.
  41. Gao, Jing & Nelson, Robert & Zhang, Lei, 2013. "Substitution in the electric power industry: An interregional comparison in the eastern US," Energy Economics, Elsevier, vol. 40(C), pages 316-325.
  42. Wesseh, Presley K. & Lin, Boqiang, 2016. "Factor demand, technical change and inter-fuel substitution in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 979-991.
  43. Manuel Frondel & Christoph M. Schmidt, 2006. "On the Restrictiveness of Separability: The Significance of Energy in German Manufacturing," RWI Discussion Papers 0038, Rheinisch-Westfälisches Institut für Wirtschaftsforschung.
  44. Winchester, Niven & White, Dominic, 2022. "The Climate PoLicy ANalysis (C-PLAN) Model, Version 1.0," Energy Economics, Elsevier, vol. 108(C).
  45. Hoy, Kyle A. & Wrenn, Douglas H., 2018. "Unconventional energy, taxation, and interstate welfare: An analysis of Pennsylvania's severance tax policy," Energy Economics, Elsevier, vol. 73(C), pages 53-65.
  46. Lans Bovenberg, A. & de Mooij, Ruud A., 1997. "Environmental tax reform and endogenous growth," Journal of Public Economics, Elsevier, vol. 63(2), pages 207-237, January.
  47. Hart, Rob, 2020. "Growth, pollution, policy!," European Economic Review, Elsevier, vol. 126(C).
  48. William F. Stine, 2008. "An empirical analysis of the effect of volunteer labor on public library employment," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 29(6), pages 525-538.
  49. Díaz, Antonia & Puch, Luis A., 2013. "A theory of vintage capital investment and energy use," UC3M Working papers. Economics we1320, Universidad Carlos III de Madrid. Departamento de Economía.
  50. Michielsen, T.O., 2011. "Brown Backstops versus the Green Paradox (Revision of CentER DP 2011-076)," Discussion Paper 2011-110, Tilburg University, Center for Economic Research.
  51. Peñasco, Cristina & del Río, Pablo & Romero-Jordán, Desiderio, 2017. "Gas and electricity demand in Spanish manufacturing industries: An analysis using homogeneous and heterogeneous estimators," Utilities Policy, Elsevier, vol. 45(C), pages 45-60.
  52. John FitzGerald, 2020. "National Accounts for a Global Economy: The Case of Ireland," NBER Chapters, in: Challenges of Globalization in the Measurement of National Accounts, pages 65-101, National Bureau of Economic Research, Inc.
  53. Roos K. Andadari & Henri L.F. de Groot & Piet Rietveld, 2012. "Production Externalities in the Wood Furniture Industry in Central Java," Tinbergen Institute Discussion Papers 12-072/3, Tinbergen Institute.
  54. Kozo Mayumi & Mario Giampietro & Jesus Ramos-Martin, 2012. "Reconsideration of Dimensions and Curve Fitting Practice in View of Georgescu-Roegen’s Epistemology in Economics," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 17-35, December.
  55. Kim, Jihyo & Heo, Eunnyeong, 2013. "Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries," Energy Economics, Elsevier, vol. 40(C), pages 81-89.
  56. Boyoon Chang & Sung Jin Kang & Tae Yong Jung, 2019. "Price and Output Elasticities of Energy Demand for Industrial Sectors in OECD Countries," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
  57. Antonia Diaz & Luis A. Puch & Maria D. Guillo, 2004. "Costly Capital Reallocation and Energy Use," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 7(2), pages 494-518, April.
  58. Andersen, Trude Berg & Nilsen, Odd Bjarte & Tveteras, Ragnar, 2011. "How is demand for natural gas determined across European industrial sectors?," Energy Policy, Elsevier, vol. 39(9), pages 5499-5508, September.
  59. Mark E Doms, 1993. "Inter Fuel Substitution And Energy Technology Heterogeneity In U.S. Manufacturing," Working Papers 93-5, Center for Economic Studies, U.S. Census Bureau.
  60. Ma, Chunbo & Stern, David I., 2016. "Long-run estimates of interfuel and interfactor elasticities," Resource and Energy Economics, Elsevier, vol. 46(C), pages 114-130.
  61. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
  62. repec:esr:forcas:qec2018sum is not listed on IDEAS
  63. Nguyen, Sang V & Streitwieser, Mary L, 1999. "Factor Substitution in U.S. Manufacturing: Does Plant Size Matter?," Small Business Economics, Springer, vol. 12(1), pages 41-57, February.
  64. Dongfeng Chang & Apostolos Serletis, 2014. "The Demand For Gasoline: Evidence From Household Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 291-313, March.
  65. Lin, Boqiang & Xu, Mengmeng, 2019. "Good subsidies or bad subsidies? Evidence from low-carbon transition in China's metallurgical industry," Energy Economics, Elsevier, vol. 83(C), pages 52-60.
  66. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
  67. Phu Viet Le, 2019. "Energy demand and factor substitution in Vietnam: evidence from two recent enterprise surveys," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-17, December.
  68. Koschel, Henrike, 2000. "Substitution elasticities between capital, labour, material, electricity and fossil fuels in German producing and service sectors," ZEW Discussion Papers 00-31, ZEW - Leibniz Centre for European Economic Research.
  69. Babiker, Mustafa H., 2005. "Climate change policy, market structure, and carbon leakage," Journal of International Economics, Elsevier, vol. 65(2), pages 421-445, March.
  70. Berglund, Christer & Soderholm, Patrik, 2003. "Complementing Empirical Evidence on Global Recycling and Trade of Waste Paper," World Development, Elsevier, vol. 31(4), pages 743-754, April.
  71. Bardazzi, Rossella & Oropallo, Filippo & Pazienza, Maria Grazia, 2015. "Do manufacturing firms react to energy prices? Evidence from Italy," Energy Economics, Elsevier, vol. 49(C), pages 168-181.
  72. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2015. "Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries," Applied Economics, Taylor & Francis Journals, vol. 47(14), pages 1438-1459, March.
  73. De Cian, Enrica, 2009. "Factor-Augmenting Technical Change: An Empirical Assessment," Sustainable Development Papers 50403, Fondazione Eni Enrico Mattei (FEEM).
  74. Boqiang Lin & Kui Liu, 2017. "Energy Substitution Effect on China’s Heavy Industry: Perspectives of a Translog Production Function and Ridge Regression," Sustainability, MDPI, vol. 9(11), pages 1-15, October.
  75. Mufutau Opeyemi, Bello, 2021. "Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy," Energy, Elsevier, vol. 228(C).
  76. Khiabani, Nasser & Hasani, Karim, 2010. "Technical and allocative inefficiencies and factor elasticities of substitution: An analysis of energy waste in Iran's manufacturing," Energy Economics, Elsevier, vol. 32(5), pages 1182-1190, September.
  77. Akihiro Otsuka, 2015. "Demand for industrial and commercial electricity: evidence from Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-11, December.
  78. Roger Fouquet, 2012. "Economics of Energy and Climate Change: Origins, Developments and Growth," Working Papers 2012-08, BC3.
  79. Bazhanov, Andrei, 2008. "Sustainable growth in a resource-based economy: the extraction-saving relationship," MPRA Paper 12350, University Library of Munich, Germany.
  80. Jorge Blazquez & Jose Maria Martin-Moreno & Rafaela Perez & Jesus Ruiz, 2017. "Fossil Fuel Price Shocks and CO2 Emissions: The Case of Spain," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
  81. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
  82. Jorge Ibarra Salazar & Francisco García Pérez, 2016. "Las demandas de factores productivos en la industria maquiladora," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 31(2), pages 265-303.
  83. Mansikkasalo, Anna & Lundmark, Robert & Söderholm, Patrik, 2014. "Market behavior and policy in the recycled paper industry: A critical survey of price elasticity research," Forest Policy and Economics, Elsevier, vol. 38(C), pages 17-29.
  84. Tauchmann, H., 2006. "Firing the furnace? An econometric analysis of utilities' fuel choice," Energy Policy, Elsevier, vol. 34(18), pages 3898-3909, December.
  85. repec:eee:labchp:v:1:y:1986:i:c:p:429-471 is not listed on IDEAS
  86. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2013. "Fuel Conservation Effect of Energy Subsidy Reform in Iran," Working Papers 3-1, Faculty of Economics,University of Tehran.Tehran,Iran.
  87. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
  88. Albert A. Okunade & Chutima Suraratdecha, 1998. "Cost efficiency, factor interchange, and technical progress in US specialized hospital pharmacies," Health Economics, John Wiley & Sons, Ltd., vol. 7(4), pages 363-371, June.
  89. He, Y.X. & Yang, L.F. & He, H.Y. & Luo, T. & Wang, Y.J., 2011. "Electricity demand price elasticity in China based on computable general equilibrium model analysis," Energy, Elsevier, vol. 36(2), pages 1115-1123.
  90. Banda, Benjamin M. & Hassan, Rashid M., 2011. "Inter-fuel substitution and dynamic adjustment in input demand: Implications for deforestation and carbon emission in Malawi," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 6(1), pages 1-16, March.
  91. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
  92. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2015. "Productive energy use and economic growth: Energy, physical and human capital relationships," Energy Economics, Elsevier, vol. 49(C), pages 420-429.
  93. Liu, Yaqin & Zhang, Jingchao & Zhu, Zhishuang & Zhao, Guohao, 2019. "Impacts of the 3E (economy, energy and environment) coordinated development on energy mix in China: The multi-objective optimisation perspective," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 56-64.
  94. Cho, Won G. & Nam, Kiseok & Pagan, Jose A., 2004. "Economic growth and interfactor/interfuel substitution in Korea," Energy Economics, Elsevier, vol. 26(1), pages 31-50, January.
  95. Miguel A. Tovar and Emma M. Iglesias, 2013. "Capital-Energy Relationships: An Analysis when Disaggregating by Industry and Different Types of Capital," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
  96. Bishwanath Goldar, 2013. "Energy Use Efficiency of India’s Organised Manufacturing," Review of Market Integration, India Development Foundation, vol. 5(2), pages 131-154, August.
  97. Christopoulos, Dimitris K. & Tsionas, Efthymios G., 2002. "Allocative inefficiency and the capital-energy controversy," Energy Economics, Elsevier, vol. 24(4), pages 305-318, July.
  98. Huntington, Hillard G. & Barrios, James J. & Arora, Vipin, 2019. "Review of key international demand elasticities for major industrializing economies," Energy Policy, Elsevier, vol. 133(C).
  99. Vega-Cervera, J.A. & Medina, J., 2000. "Energy as a productive input: The underlying technology for Portugal and Spain," Energy, Elsevier, vol. 25(8), pages 757-775.
  100. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
  101. Bazhanov, Andrei V., 2013. "Constant-utility paths in a resource-based economy," Resource and Energy Economics, Elsevier, vol. 35(3), pages 342-355.
  102. Michielsen, T.O., 2011. "Brown Backstops versus the Green Paradox (Revision of CentER DP 2011-076)," Other publications TiSEM 7dc5a955-80bb-4069-bdbf-d, Tilburg University, School of Economics and Management.
  103. Ramcharran, Harri, 2002. "Oil production responses to price changes: an empirical application of the competitive model to OPEC and non-OPEC countries," Energy Economics, Elsevier, vol. 24(2), pages 97-106, March.
  104. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2013. "Fuel Conservation Effect of Energy Subsidy Reform in Iran," IDEC DP2 Series 3-1, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
  105. Bishwanath Goldar, 2010. "Energy Intensity of Indian Manufacturing Firms: Effect of Energy Prices, Technology and Firm Characteristics," Working Papers id:2483, eSocialSciences.
  106. Baiocchi, Giovanni, 2012. "On dimensions of ecological economics," Ecological Economics, Elsevier, vol. 75(C), pages 1-9.
  107. Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
  108. Zhao, Hongli & Lin, Boqiang, 2019. "Resources allocation and more efficient use of energy in China's textile industry," Energy, Elsevier, vol. 185(C), pages 111-120.
  109. Ponomareva, Ekaterina A. (Пономарева, Екатерина), 2017. "The Influence of Tariff Policy of Natural Monopolies on Producer Prices in the Russian Federation in 2003–2016 [Влияние Тарифов Естественных Монополий На Цены Производителей В России В 2003–2016 Го," Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 6, pages 42-71, December.
  110. Rentschler, Jun & Kornejew, Martin, 2017. "Energy price variation and competitiveness: Firm level evidence from Indonesia," Energy Economics, Elsevier, vol. 67(C), pages 242-254.
  111. Stier, Jeffrey C., 1980. "Technological Adaptation To Resource Scarcity In The U.S. Lumber Industry," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 5(2), pages 1-12, December.
  112. Bazhanov, Andrei, 2008. "Maximin-optimal sustainable growth in a resource-based imperfect economy," MPRA Paper 16245, University Library of Munich, Germany, revised 13 Jul 2009.
  113. Genc, Talat S., 2017. "OPEC and demand response to crude oil prices," Energy Economics, Elsevier, vol. 66(C), pages 238-246.
  114. repec:zbw:rwidps:0038 is not listed on IDEAS
  115. Mayumi, Kozo & Giampietro, Mario, 2010. "Dimensions and logarithmic function in economics: A short critical analysis," Ecological Economics, Elsevier, vol. 69(8), pages 1604-1609, June.
  116. Hart, Rob, 2018. "Rebound, directed technological change, and aggregate demand for energy," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 218-234.
  117. Sahu, Santosh & Narayanan, K, 2009. "Determinants of Energy Intensity: A Preliminary Investigation of Indian Manufacturing," MPRA Paper 16606, University Library of Munich, Germany.
  118. Hosoe, Nobuhiro & Akiyama, Shu-ichi, 2009. "Regional electric power demand elasticities of Japan's industrial and commercial sectors," Energy Policy, Elsevier, vol. 37(11), pages 4313-4319, November.
  119. Dargay, Joyce M., 1980. "The Demand for Energy in Swedish Manufacturing," Working Paper Series 33, Research Institute of Industrial Economics, revised Aug 1982.
  120. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
  121. Ferreira, Paula & Soares, Isabel & Araujo, Madalena, 2005. "Liberalisation, consumption heterogeneity and the dynamics of energy prices," Energy Policy, Elsevier, vol. 33(17), pages 2244-2255, November.
  122. Andrew Atkeson & Patrick J. Kehoe, 1997. "Models of energy use: putty-putty vs. putty-clay," Staff Report 230, Federal Reserve Bank of Minneapolis.
  123. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
  124. Renou-Maissant, Patricia, 1999. "Interfuel competition in the industrial sector of seven OECD countries," Energy Policy, Elsevier, vol. 27(2), pages 99-110, February.
  125. Mustafa Babiker, 1998. "The CO2 Abatement Game: Costs, Incentives and the Stability of a Sub-Global Coalition," Computational Economics 9807002, University Library of Munich, Germany.
  126. Piggott, John & Whalley, John & Wigle, Randall, 1993. "How large are the incentives to join subglobal carbon-reduction initiatives?," Journal of Policy Modeling, Elsevier, vol. 15(5-6), pages 473-490.
  127. Bazhanov, Andrei, 2006. "The peak of oil extraction and a modified maximin principle," MPRA Paper 14775, University Library of Munich, Germany, revised 12 Feb 2007.
  128. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
  129. Frondel, Manuel & Schmidt, Christoph M., 2006. "On the Restrictiveness of Separability: The Significance of Energy in German Manufacturing," RWI Discussion Papers 38, RWI - Leibniz-Institut für Wirtschaftsforschung.
  130. Antonio Roma & Davide Pirino, 2008. "A Theoretical Model for the Extraction and Refinement of Natural Resources," Department of Economics University of Siena 537, Department of Economics, University of Siena.
  131. Frondel, Manuel, 2004. "Empirical assessment of energy-price policies: the case for cross-price elasticities," Energy Policy, Elsevier, vol. 32(8), pages 989-1000, June.
  132. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2009. "On interfuel substitution : some international evidence," Policy Research Working Paper Series 5026, The World Bank.
  133. repec:hal:wpaper:hal-00860045 is not listed on IDEAS
  134. Lee, Myunghun, 2013. "The effects of an increase in power rate on energy demand and output price in Korean manufacturing sectors," Energy Policy, Elsevier, vol. 63(C), pages 1217-1223.
  135. Bazhanov, Andrei & Belyaev, Alexander, 2009. "Адекватность Закрытой Модели Для Российской Экономики В Задаче Сравнительного Анализа Энергетической Стратегии России [Adequacy of a closed model for Russian economy in the problem of comparative a," MPRA Paper 15109, University Library of Munich, Germany.
  136. Bjorner, Thomas Bue & Togeby, Mikael & Jensen, Henrik Holm, 2001. "Industrial companies' demand for electricity: evidence from a micropanel," Energy Economics, Elsevier, vol. 23(5), pages 595-617, September.
  137. Wang, Ailun & Lin, Boqiang, 2020. "Structural optimization and carbon taxation in China's commercial sector," Energy Policy, Elsevier, vol. 140(C).
  138. Lee, Lung-Fei & Pitt, Mark M., 1984. "Microeconometric Models of Consumer and Producer Demand with Limited Dependent Variables," Bulletins 7495, University of Minnesota, Economic Development Center.
  139. Martijn Brons & Peter Nijkamp & Eric Pels & Piet Rietveld, 2006. "A Meta-analysis of the Price Elasticity of Gasoline Demand. A System of Equations Approach," Tinbergen Institute Discussion Papers 06-106/3, Tinbergen Institute.
  140. Hossain, A. K. M. Nurul & Serletis, Apostolos, 2020. "Biofuel substitution in the U.S. transportation sector," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
  141. Arvid Raknerud & Rolf Golombek, 2000. "Exit Dynamics with Rational Expectations," Discussion Papers 291, Statistics Norway, Research Department.
  142. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
  143. Ghisetti, Claudia & Quatraro, Francesco, 2013. "Beyond inducement in climate change: Does environmental performance spur environmental technologies? A regional analysis of cross-sectoral differences," Ecological Economics, Elsevier, vol. 96(C), pages 99-113.
  144. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
  145. Harald Tauchmann, 2004. "Firing the Furnace? – An Econometric Analysis of Utilities’ Fuel Choice," RWI Discussion Papers 0017, Rheinisch-Westfälisches Institut für Wirtschaftsforschung.
  146. Hisnanick, John J. & Kyer, Ben L., 1995. "Assessing a disaggregated energy input : Using confidence intervals around translog elasticity estimates," Energy Economics, Elsevier, vol. 17(2), pages 125-132, April.
  147. repec:zbw:rwidps:0017 is not listed on IDEAS
  148. Enrica De Cian & Ramiro Parrado, 2012. "Technology Spillovers Embodied in International Trade: Intertemporal, regional and sectoral effects in a global CGE," Working Papers 2012.27, Fondazione Eni Enrico Mattei.
  149. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
  150. Patrick Artus & Pierre-Alain Muet & Agnès Picard & Claude Peyroux, 1982. "Politique conjoncturelle et investissement dans les années 70," Revue de l'OFCE, Programme National Persée, vol. 1(1), pages 61-90.
  151. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
  152. Lin, Boqiang & Atsagli, Philip, 2017. "Inter-fuel substitution possibilities in South Africa: A translog production function approach," Energy, Elsevier, vol. 121(C), pages 822-831.
  153. Rentschler, Jun & Kornejew, Martin & Bazilian, Morgan, 2017. "Fossil fuel subsidy reforms and their impacts on firms," Energy Policy, Elsevier, vol. 108(C), pages 617-623.
  154. Yang, Mian & Fan, Ying & Yang, Fuxia & Hu, Hui, 2014. "Regional disparities in carbon dioxide reduction from China's uniform carbon tax: A perspective on interfactor/interfuel substitution," Energy, Elsevier, vol. 74(C), pages 131-139.
  155. Runqing Zhu & Boqiang Lin, 2022. "How Does the Carbon Tax Influence the Energy and Carbon Performance of China’s Mining Industry?," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
  156. Miles Finney, 1997. "Scale Economies And Police Department Consolidation: Evidence From Los Angeles," Contemporary Economic Policy, Western Economic Association International, vol. 15(1), pages 121-127, January.
  157. G. Thomas Sav, 1987. "Tax Incentives for Innovative Energy Sources: Extensions of E-K Complementarity," Public Finance Review, , vol. 15(4), pages 417-427, October.
  158. McQuinn, Kieran & O’Toole, Conor & Economides, Philip & Monteiro, Teresa, 2018. "Quarterly Economic Commentary, Summer 2018," Forecasting Report, Economic and Social Research Institute (ESRI), number QEC2018SUM, August.
  159. James Brox & Christina Fader, 2005. "Infrastructure investment and Canadian manufacturing productivity," Applied Economics, Taylor & Francis Journals, vol. 37(11), pages 1247-1256.
  160. Wilson, William W., 1994. "Demand For Wheat Classes By Pacific Rim Countries," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 19(1), pages 1-13, July.
  161. Harald Tauchmann, 2005. "Co2 Abatement and Fuel Mix in German Electric Power Generation — Is the “Ecological Electricity Tax†Ecologically Effective?," Energy & Environment, , vol. 16(2), pages 255-271, March.
  162. Roy, Joyashree & Sanstad, Alan H. & Sathaye, Jayant A. & Khaddaria, Raman, 2006. "Substitution and price elasticity estimates using inter-country pooled data in a translog cost model," Energy Economics, Elsevier, vol. 28(5-6), pages 706-719, November.
  163. Bazhanov, Andrei, 2006. "Decreasing of Oil Extraction: Consumption behavior along transition paths," MPRA Paper 469, University Library of Munich, Germany.
  164. Claudia Ghisetti & Francesco Quatraro, 2013. "Beyond the Inducement in Climate Change: Do Environmental Performances Spur Enrivornmental Technologies? A Regional Analysis of Cross-Sectoral Differences," Working Papers 2013112, University of Ferrara, Department of Economics.
  165. Valeria Costantini & Elena Paglialunga, 2014. "Elasticity of substitution in capital-energy relationships: how central is a sector-based panel estimation approach?," SEEDS Working Papers 1314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
  166. Serletis, Apostolos & Xu, Libo, 2022. "Interfuel substitution: A copula approach," Journal of Commodity Markets, Elsevier, vol. 28(C).
  167. Hamermesh, Daniel S., 1987. "The demand for labor in the long run," Handbook of Labor Economics, in: O. Ashenfelter & R. Layard (ed.), Handbook of Labor Economics, edition 1, volume 1, chapter 8, pages 429-471, Elsevier.
  168. Jacobs, Bas & van der Ploeg, Frederick, 2019. "Redistribution and pollution taxes with non-linear Engel curves," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 198-226.
  169. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
  170. Roula Inglesi-Lotz, 2012. "The sensitivity of the South African industrial sector’s electricity consumption to electricity price fluctuations," Working Papers 201225, University of Pretoria, Department of Economics.
  171. Nurul Hossain, A.K.M. & Serletis, Apostolos, 2017. "A century of interfuel substitution," Journal of Commodity Markets, Elsevier, vol. 8(C), pages 28-42.
  172. Babiker, Mustafa H., 2001. "The CO2 abatement game: Costs, incentives, and the enforceability of a sub-global coalition," Journal of Economic Dynamics and Control, Elsevier, vol. 25(1-2), pages 1-34, January.
  173. Bazhanov, Andrei V., 2007. "The transition to an oil contraction economy," Ecological Economics, Elsevier, vol. 64(1), pages 186-193, October.
  174. Calbick, K.S. & Gunton, Thomas, 2014. "Differences among OECD countries’ GHG emissions: Causes and policy implications," Energy Policy, Elsevier, vol. 67(C), pages 895-902.
  175. Lin, Boqiang & Xie, Chunping, 2014. "Energy substitution effect on transport industry of China-based on trans-log production function," Energy, Elsevier, vol. 67(C), pages 213-222.
  176. Shahiduzzaman, M.D. & Alam, Khorshed, 2014. "Interfuel substitution in Australia: a way forward to achieve environmental sustainability," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
  177. Mirshojaeian Hosseini , Hossein & Majed , Vahid & Kaneko , Shinji, 2015. "The Effects of Energy Subsidy Reform on Fuel Demand in Iran," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 10(2), pages 23-47, January.
  178. Li, Jianglong & Sun, Chuanwang, 2018. "Towards a low carbon economy by removing fossil fuel subsidies?," China Economic Review, Elsevier, vol. 50(C), pages 17-33.
  179. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
  180. Michael P. Keane & Eswar S. Prasad, 1991. "The employment and wage effects of oil price shocks: a sectoral analysis," Discussion Paper / Institute for Empirical Macroeconomics 51, Federal Reserve Bank of Minneapolis.
  181. Dong Hee Suh & Charles B. Moss, 2017. "Dynamic adjustment of ethanol demand to crude oil prices: implications for mandated ethanol usage," Empirical Economics, Springer, vol. 52(4), pages 1587-1607, June.
  182. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2011. "International evidence on aggregate short-run and long-run interfuel substitution," Energy Economics, Elsevier, vol. 33(2), pages 209-216, March.
  183. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
  184. Taneja, Shivani & Mandys, Filip, 2022. "The effect of disaggregated information and communication technologies on industrial energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
  185. Haishu Qiao & Ying Li & Julien Chevallier & Bangzhu Zhu, 2016. "Capital–energy substitution in China: regional differences and dynamic evolution," Post-Communist Economies, Taylor & Francis Journals, vol. 28(4), pages 421-435, October.
  186. Hu, Baiding, 2014. "Measuring plant level energy efficiency in China's energy sector in the presence of allocative inefficiency," China Economic Review, Elsevier, vol. 31(C), pages 130-144.
  187. Claudia Ghisetti & Francesco Quatraro, 2013. "Beyond inducement in climate change: Does environmental performance spur environmental technologies?," Post-Print hal-00860045, HAL.
  188. Bataille, Chris & Melton, Noel, 2017. "Energy efficiency and economic growth: A retrospective CGE analysis for Canada from 2002 to 2012," Energy Economics, Elsevier, vol. 64(C), pages 118-130.
  189. Kyu Sik Lee & Anas, Alex & Verma, Satyendra & Murray, Michael, 1996. "Why manufacturing firms produce some electricity internally," Policy Research Working Paper Series 1605, The World Bank.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.