IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v19y1985i4p287-301.html
   My bibliography  Save this item

Estimating the demand for electric automobiles using fully disaggregated probabilistic choice analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Turrentine, Thomas S. & Kurani, Kenneth S., 2007. "Car buyers and fuel economy?," Energy Policy, Elsevier, vol. 35(2), pages 1213-1223, February.
  2. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
  3. Bas, Javier & Zofío, José L. & Cirillo, Cinzia & Chen, Hao & Rakha, Hesham A., 2022. "Policy and industry implications of the potential market penetration of electric vehicles with eco-cooperative adaptive cruise control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 242-256.
  4. Axsen, Jonn, 2010. "Interpersonal Influence within Car Buyers’ Social Networks: Observing Consumer Assessment of Plug-in Hybrid Electric Vehicles (PHEVs) and the Spread of Pro-Societal Values," Institute of Transportation Studies, Working Paper Series qt8p32d18k, Institute of Transportation Studies, UC Davis.
  5. Turrentine, Tom & Kurani, Kenneth S, 2007. "Car buyers and fuel economy?," Institute of Transportation Studies, Working Paper Series qt56x845v4, Institute of Transportation Studies, UC Davis.
  6. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
  7. Giansoldati, Marco & Danielis, Romeo & Rotaris, Lucia & Scorrano, Mariangela, 2018. "The role of driving range in consumers' purchasing decision for electric cars in Italy," Energy, Elsevier, vol. 165(PA), pages 267-274.
  8. Chéron, Emmanuel & Zins, Michel, 1997. "Electric vehicle purchasing intentions: The concern over battery charge duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 235-243, May.
  9. Bunch, David S & Brownstone, David & Golob, Thomas F, 1995. "A Dynamic Forecasting System for Vehicle Markets with Clean-Fuel Vehicles," University of California Transportation Center, Working Papers qt0xs9c8p6, University of California Transportation Center.
  10. Xiaoxia Dong & Matthew DiScenna & Erick Guerra, 2019. "Transit user perceptions of driverless buses," Transportation, Springer, vol. 46(1), pages 35-50, February.
  11. Heffner, Reid R., 2007. "Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers," Institute of Transportation Studies, Working Paper Series qt9mw1t4w3, Institute of Transportation Studies, UC Davis.
  12. Sperling, Daniel & Setiawan, Winardi & Hungerford, David, 1995. "The target market for methanol fuel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(1), pages 33-45, January.
  13. J�r�me Massiani, 2013. "The use of Stated Preferences to forecast alternative fuel vehicles market diffusion: Comparisons with other methods and proposal for a Synthetic Utility Function," Working Papers 2013:12, Department of Economics, University of Venice "Ca' Foscari".
  14. Tanto Adi Waluyo & Muhammad Zudhy Irawan & Dewanti, 2022. "Adopting Electric Motorcycles for Ride-Hailing Services: Influential Factors from Driver’s Perspective," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
  15. Kurani, Kenneth S. & Turrentine, Thomas & Sperling, Daniel, 2001. "Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey," University of California Transportation Center, Working Papers qt0xf006kd, University of California Transportation Center.
  16. Nobuyuki Ito & Kenji Takeuchi & Shunsuke Managi, 2012. "Willingness to pay for the infrastructure investments for alternative fuel vehicles," Discussion Papers 1207, Graduate School of Economics, Kobe University.
  17. Yan, Jianghui & Tseng, Fang-Mei & Lu, Louis Y.Y., 2018. "Developmental trajectories of new energy vehicle research in economic management: Main path analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 168-181.
  18. Bergantino, Angela Stefania & Capozza, Claudia & Intini, Mario, 2018. "Empirical investigation of retail gasoline prices," Working Papers 18_4, SIET Società Italiana di Economia dei Trasporti e della Logistica.
  19. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
  20. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
  21. Heffner, Reid R. & Kurani, Kenneth S & Turrentine, Tom, 2008. "Symbolism in California’s Early Market for Hybrid Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt9zt4g01t, Institute of Transportation Studies, UC Davis.
  22. Ivan K. W. Lai & Yide Liu & Xinbo Sun & Hao Zhang & Weiwei Xu, 2015. "Factors Influencing the Behavioural Intention towards Full Electric Vehicles: An Empirical Study in Macau," Sustainability, MDPI, vol. 7(9), pages 1-22, September.
  23. Dagsvik, John K. & Wennemo, Tom & Wetterwald, Dag G. & Aaberge, Rolf, 2002. "Potential demand for alternative fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 361-384, May.
  24. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
  25. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
  26. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
  27. J�r�me Massiani, 2013. "SP surveys for electric and alternative fuel vehicles: are we doing the right thing?," Working Papers 2013_01, Department of Economics, University of Venice "Ca' Foscari".
  28. Jones, Luke R. & Cherry, Christopher R. & Vu, Tuan A. & Nguyen, Quang N., 2013. "The effect of incentives and technology on the adoption of electric motorcycles: A stated choice experiment in Vietnam," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 1-11.
  29. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
  30. Daziano, Ricardo A., 2013. "Conditional-logit Bayes estimators for consumer valuation of electric vehicle driving range," Resource and Energy Economics, Elsevier, vol. 35(3), pages 429-450.
  31. Peterson, Meghan B. & Barter, Garrett E. & West, Todd H. & Manley, Dawn K., 2014. "A parametric study of light-duty natural gas vehicle competitiveness in the United States through 2050," Applied Energy, Elsevier, vol. 125(C), pages 206-217.
  32. Brownstone, David & Bunch, David S. & Golob, Thomas F., 1994. "A Demand Forecasting System for Clean-Fuel Vehicles," University of California Transportation Center, Working Papers qt79c3g7xv, University of California Transportation Center.
  33. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
  34. Yang, Xiaofang & Jin, Wen & Jiang, Hai & Xie, Qianyan & Shen, Wei & Han, Weijian, 2017. "Car ownership policies in China: Preferences of residents and influence on the choice of electric cars," Transport Policy, Elsevier, vol. 58(C), pages 62-71.
  35. Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  36. Golob, Thomas F. & Gould, Jane, 1998. "Projecting use of electric vehicles from household vehicle trials," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 441-454, September.
  37. Barter, Garrett E. & Reichmuth, David & Westbrook, Jessica & Malczynski, Leonard A. & West, Todd H. & Manley, Dawn K. & Guzman, Katherine D. & Edwards, Donna M., 2012. "Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles," Energy Policy, Elsevier, vol. 46(C), pages 473-488.
  38. Alexandros Dimitropoulos & Piet Rietveld & Jos N. van Ommeren, 2011. "Consumer Valuation of Driving Range: A Meta-Analysis," Tinbergen Institute Discussion Papers 11-133/3, Tinbergen Institute.
  39. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
  40. Sheng, Hongyan, 1999. "A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information," University of California Transportation Center, Working Papers qt0zp4g99j, University of California Transportation Center.
  41. Thomas M. Fojcik & Heike Proff, 2014. "Accelerating market diffusion of battery electric vehicles through alternative mobility concepts," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 347-368.
  42. Hoen, Anco & Koetse, Mark J., 2014. "A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 199-215.
  43. Axsen, Jonn & Orlebar, Caroline & Skippon, Stephen, 2013. "Social influence and consumer preference formation for pro-environmental technology: The case of a U.K. workplace electric-vehicle study," Ecological Economics, Elsevier, vol. 95(C), pages 96-107.
  44. Hidrue, Michael K. & Parsons, George R., 2015. "Is there a near-term market for vehicle-to-grid electric vehicles?," Applied Energy, Elsevier, vol. 151(C), pages 67-76.
  45. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
  46. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
  47. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
  48. Heffner, Reid & Kurani, Kenneth S. & Turrentine, Thomas S., 2007. "Symbolism In Early Markets For Hybrid Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt0v04n3rg, Institute of Transportation Studies, UC Davis.
  49. Takanori Ida & Kayo Murakami & Makoto Tanaka, 2012. "Keys to Smart Home Diffusion: A Stated Preference Analysis of Smart Meters, Photovoltaic Generation, and Electric/Hybrid Vehicles," Discussion papers e-11-011, Graduate School of Economics Project Center, Kyoto University.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.